Accès gratuit
Numéro
Med Sci (Paris)
Volume 21, Numéro 5, Mai 2005
Page(s) 556 - 557
Section Dernière Heure
DOI https://doi.org/10.1051/medsci/2005215556
Publié en ligne 15 mai 2005
  1. Landles C, Bates GP. Huntingtin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series. EMBO Rep 2004; 5 : 958–63. [Google Scholar]
  2. Sisodia SS. Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial ? Cell 1998; 95 : 1–4. [Google Scholar]
  3. Davies SW, Turmaine M, Cozens BA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90 : 537–48. [Google Scholar]
  4. DiFiglia M, Sapp E, Chase KO, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997; 277 : 1990–3. [Google Scholar]
  5. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004; 431 : 805–10. [Google Scholar]
  6. Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 1998; 95 : 55–66. [Google Scholar]
  7. Dunah AW, Jeong H, Griffin A, et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science 2002; 296 : 2238–43. [Google Scholar]
  8. Holbert S, Denghien I, Kiechle T, et al. The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington’s disease pathogenesis. Proc Natl Acad Sci USA 2001; 98 : 1811–6. [Google Scholar]
  9. Steffan JS, Kazantsev A, Spasic-Boskovic O, et al. The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci USA 2000; 97 : 6763–8. [Google Scholar]
  10. Sugars KL, Rubinsztein DC. Transcriptional abnormalities in Huntington disease. Trends Genet 2003; 19 : 233–8. [Google Scholar]
  11. Kenyon C. The plasticity of aging: insights from long-lived mutants.Cell 2005; 120 : 449–60. [Google Scholar]
  12. Hekimi S, Guarente L. Genetics and the specificity of the aging process. Science 2003; 299 : 1351–4. [Google Scholar]
  13. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science 2003; 299 : 1346–51. [Google Scholar]
  14. Brunet A. Les multiples actions des facteurs de transcription FOXO. Med Sci (Paris) 2004; 20 : 856–9. [Google Scholar]
  15. Wang MC, Bohmann D, Jasper H. JNK Extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 2005; 121 : 115–25. [Google Scholar]
  16. Brunet A, Sweeney LB, Sturgill FJ, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303 : 2011–5. [Google Scholar]
  17. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116 : 551–63. [Google Scholar]
  18. Araki T, Sasaki Y, Milbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004; 305 : 1010–3. [Google Scholar]
  19. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425 : 191–6. [Google Scholar]
  20. Kaeberlein M, McDonagh T, Heltweg B, et al. Substrate specific activation fo sirtuins by resveratrol. J Biol Chem 2005 (sous presse). [Google Scholar]
  21. Parker JA, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 2005; 37 : 349–50. [Google Scholar]
  22. Parker JA, Connolly JB, Wellington C, et al. Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci USA 2001; 98 : 13318–23. [Google Scholar]
  23. Trettel F, Rigamonti D, Hilditch-Maguire P, et al. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol Genet 2000; 9 : 2799–809. [Google Scholar]
  24. O’Hagan R, Chalfie M, Goodman MB. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 2005; 8 : 43–50. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.