Accès gratuit
Numéro
Med Sci (Paris)
Volume 21, Numéro 4, Avril 2005
Page(s) 422 - 427
Section M/S revues
DOI https://doi.org/10.1051/medsci/2005214422
Publié en ligne 15 avril 2005
  1. Steimer A, Schob H, Grossniklaus U. Epigenetic control of plant development: new layers of complexity. Curr Opin Plant Biol 2004; 7 : 11–9. [Google Scholar]
  2. Henderson IR, Dean C. Control of Arabidopsis flowering : the chill before the bloom. Development 2004; 131 : 3829–38. [Google Scholar]
  3. Sheldon CC, Rouse DT, Finnegan EJ, et al. The molecular basis of vernalization : the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA 2000; 97 : 3753–8. [Google Scholar]
  4. Sung S, Amasino RM. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 2004; 427 : 159–64. [Google Scholar]
  5. He Y, Amasino RM. Role of chromatin modification in flowering-time control. Trends Plant Sci 2005; 10 : 30–5. [Google Scholar]
  6. Lippman Z, Gendrel AV, Black M, et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 2004; 430 : 471–6. [Google Scholar]
  7. Bastow R, Mylne JS, Lister C, et al. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 2004; 427 : 164–7. [Google Scholar]
  8. Gendall AR, Levy YY, Wilson A, Dean C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 2001; 107 : 525–35. [Google Scholar]
  9. Ringrose L, Paro R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 2004; 38 : 413–43. [Google Scholar]
  10. Muller J, Hart CM, Francis NJ, et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 2002; 111 : 197–208. [Google Scholar]
  11. Kermicle JL. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 1970; 66 : 69–85. [Google Scholar]
  12. Ferguson-Smith A, Lin SP, Tsai CE, et al. Genomic imprinting-insights from studies in mice. Semin Cell Dev Biol 2003; 14 : 43–9. [Google Scholar]
  13. Walter J, Paulsen M. Imprinting and disease. Semin Cell Dev Biol 2003; 14 : 101–10. [Google Scholar]
  14. Gehring M, Choi Y, Fischer RL. Imprinting and seed development. Plant Cell 2004; 16 (suppl) : S203–13. [Google Scholar]
  15. Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 1998; 280 : 446–50. [Google Scholar]
  16. Vielle-Calzada JP, Baskar R, Grossniklaus U. Delayed activation of the paternal genome during seed development. Nature 2000; 404 : 91–4. [Google Scholar]
  17. Kinoshita T, Miura A, Choi Y, et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 2004; 303 : 521–3. [Google Scholar]
  18. Choi Y, Gehring M, Johnson L, et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 2002; 110 : 33–42. [Google Scholar]
  19. Soppe WJ, Jacobsen SE, Alonso-Blanco C, et al. The late flowering phenotype of FWA mutants is caused by gain-of- function epigenetic alleles of a homeodomain gene. Mol Cell 2000; 6 : 791–802. [Google Scholar]
  20. Colot V, Rossignol JL. Eukaryotic DNA methylation as an evolutionary device. Bioessays 1999; 21 : 402–11. [Google Scholar]
  21. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 1997; 13 : 335–40. [Google Scholar]
  22. Rabinowicz PD, Palmer LE, May BP, et al. Genes and transposons are differentially methylated in plants, but not in mammals. Genome Res 2003; 13 : 2658–64. [Google Scholar]
  23. Jaenisch R, Bird A. Epigenetic regulation of gene expression : how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33 (suppl) : 245–54. [Google Scholar]
  24. Martienssen RA, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 2001; 293 : 1070–4. [Google Scholar]
  25. Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 1999; 401 : 157–61. [Google Scholar]
  26. Jacobsen SE, Meyerowitz EM. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 1997; 277 : 1100–3. [Google Scholar]
  27. Lund AH, van Lohuizen M. Epigenetics and cancer. Genes Dev 2004; 18 : 2315–35. [Google Scholar]
  28. Chong S, Whitelaw E. Epigenetic germline inheritance. Curr Opin Genet Dev 2004; 14 : 692–6. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.