Free Access
Med Sci (Paris)
Volume 21, Number 4, Avril 2005
Page(s) 412 - 421
Section M/S revues
Published online 15 April 2005
  1. Holliday R. Epigenetics : an overview. Dev Genet 1994; 15 : 453–7. [Google Scholar]
  2. Sadoni N, Langer S, Fauth C, et al. Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 1999; 146 : 1211–26. [Google Scholar]
  3. Craig JM. Heterochromatin-many flavours, common themes. Bioessays 2005; 27 : 17–28. [Google Scholar]
  4. Western PS, Surani MA. Nuclear reprogramming-alchemy or analysis ? Nat Biotechnol 2002; 20 : 445–6. [Google Scholar]
  5. Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frog’s eggs. Proc Natl Acad Sci USA 1952; 38 : 455–63. [Google Scholar]
  6. Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Dev Biol 1962; 4 : 256–73. [Google Scholar]
  7. Gurdon JB, Uehlinger V. « Fertile » intestine nuclei. Nature 1966; 210 : 1240–1. [Google Scholar]
  8. Jouneau A, Renard JP. Reprogramming in nuclear transfer. Curr Opin Genet Dev 2003; 13 : 486–91. [Google Scholar]
  9. Hiiragi T, Solter D. Reprogramming is essential in nuclear transfer. Mol Reprod Dev 2005; 70 : 417–21. [Google Scholar]
  10. Borsuk E, Szollosi MS, Besomebes D, Debey P. Fusion with activated mouse oocytes modulates the transcriptional activity of introduced somatic cell nuclei. Exp Cell Res 1996; 225 : 93–101. [Google Scholar]
  11. Szollosi D, Czolowska R, Borsuk E, et al. Nuclear envelope removal/maintenance determines the structural and functional remodelling of embryonic red blood cell nuclei in activated mouse oocytes. Zygote 1998; 6 : 65–73. [Google Scholar]
  12. Campbell KH, Loi P, Otaegui PJ, Wilmut I. Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev Reprod 1996; 1 : 40–6. [Google Scholar]
  13. Blau HM, Chiu CP, Webster C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 1983; 32 : 1171–80. [Google Scholar]
  14. Chiu CP, Blau HM. Reprogramming cell differentiation in the absence of DNA synthesis. Cell 1984; 37 : 879–87. [Google Scholar]
  15. Blau HM, Pavlath GK, Hardeman EC, et al. Plasticity of the differentiated state. Science 1985; 230 : 758–66. [Google Scholar]
  16. Ringertz NE, Savage RE. Cell hybrids. New York : Academic press, 1976. [Google Scholar]
  17. Chiu CP, Blau HM. 5-Azacytidine permits gene activation in a previously noninducible cell type. Cell 1985; 40 : 417–24. [Google Scholar]
  18. Hakelien AM, Landsverk HB, Robl JM, et al. Reprogramming fibroblasts to express T-cell functions using cell extracts. Nat Biotechnol 2002; 20 : 460–6. [Google Scholar]
  19. Kimura H, Tada M, Nakatsuji N, Tada T. Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol Cell Biol 2004; 24 : 5710–20. [Google Scholar]
  20. Merriam RW. Movement of cytoplasmic proteins into nuclei induced to enlarge and initiate DNA or RNA synthesis. J Cell Sci 1969; 5 : 333–49. [Google Scholar]
  21. Barry JM, Merriam RW. Swelling of hen erythrocyte nuclei in cytoplasm from Xenopus eggs. Exp Cell Res 1972; 71 : 90–6. [Google Scholar]
  22. Gurdon JB. Injected nuclei in frog oocytes : fate, enlargement, and chromatin dispersal. J Embryol Exp Morphol 1976; 36 : 523–40. [Google Scholar]
  23. Gurdon JB, Laskey RA, De Robertis EM, Partington GA. Reprogramming of transplanted nuclei in amphibia. Int Rev Cytol 1979; 9 (suppl) : 161–78. [Google Scholar]
  24. Gao S, Gasparrini B, McGarry M, et al. Germinal vesicle material is essential for nucleus remodeling after nuclear transfer. Biol Reprod 2002; 67 : 928–34. [Google Scholar]
  25. Wakayama T, Perry AC, Zuccotti M, et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998; 394 : 369–74. [Google Scholar]
  26. Ducibella T, Huneau D, Angelichio E, et al. Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev Biol 2002; 250 : 280–91. [Google Scholar]
  27. Eggan K, Baldwin K, Tackett M, et al. Mice cloned from olfactory sensory neurons. Nature 2004; 428 : 44–9. [Google Scholar]
  28. Vignon X, Zhou Q, Renard JP. Chromatin as a regulative architecture of the early developmental functions of mammalian embryos after fertilization or nuclear transfer. Cloning Stem Cells 2002; 4 : 363–77. [Google Scholar]
  29. Heyman Y, Chavatte-Palmer P, LeBourhis D, et al. Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol Reprod 2002; 66 : 6–13. [Google Scholar]
  30. Gonda K, Fowler J, Katoku-Kikyo N, et al. Reversible disassembly of somatic nucleoli by the germ cell proteins FRGY2a and FRGY2b. Nat Cell Biol 2003; 5 : 205–10. [Google Scholar]
  31. Gao S, Chung YG, Parseghian MH, et al. Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer : evidence for a uniform developmental program in mice. Dev Biol 2004; 266 : 62–75. [Google Scholar]
  32. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69 : 915–26. [Google Scholar]
  33. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99 : 247–57. [Google Scholar]
  34. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16 : 6–21. [Google Scholar]
  35. Mayer W, Niveleau A, Walter J, et al. Demethylation of the zygotic paternal genome. Nature 2000; 403 : 501–2. [Google Scholar]
  36. Rougier N, Bourc’his D, Gomes DM, et al. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev 1998; 12 : 2108–13. [Google Scholar]
  37. Dean W, Santos F, Stojkovic M, et al. Conservation of methylation reprogramming in mammalian development : aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 2001; 98 : 13734–8. [Google Scholar]
  38. Bourc’his D, Le Bourhis D, Patin D, et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol 2001; 11 : 1542–6. [Google Scholar]
  39. Beaujean N, Taylor J, Gardner J, et al. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol Reprod 2004; 71 : 185–93. [Google Scholar]
  40. Beaujean N, Taylor JE, McGarry M, et al. The effect of interspecific oocytes on demethylation of sperm DNA. Proc Natl Acad Sci USA 2004; 101 : 7636–40. [Google Scholar]
  41. Santos F, Zakhartchenko V, Stojkovic M, et al. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 2003; 13 : 1116–21. [Google Scholar]
  42. Humpherys D, Eggan K, Akutsu H, et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci USA 2002; 99 : 12889–94. [Google Scholar]
  43. Niemann H, Wrenzycki C, Lucas-Hahn A, et al. Gene expression patterns in bovine in vitro-produced and nuclear transfer-derived embryos and their implications for early development. Cloning Stem Cells 2002; 4 : 29–38. [Google Scholar]
  44. Daniels R, Hall V, Trounson AO. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei. Biol Reprod 2000; 63 : 1034–40. [Google Scholar]
  45. Gao S, Chung YG, Williams JW, et al. Somatic cell-like features of cloned mouse embryos prepared with cultured myoblast nuclei. Biol Reprod 2003; 69 : 48–56. [Google Scholar]
  46. Arat S, Rzucidlo SJ, Stice SL. Gene expression and in vitro development of inter-species nuclear transfer embryos. Mol Reprod Dev 2003; 66 : 334–42. [Google Scholar]
  47. De Sousa PA, King T, Harkness L, et al. Evaluation of gestational deficiencies in cloned sheep fetuses and placentae. Biol Reprod 2001; 65 : 23–30. [Google Scholar]
  48. Shiota K, Yanagimachi R. Epigenetics by DNA methylation for development of normal and cloned animals. Differentiation 2002; 69 : 162–6. [Google Scholar]
  49. Ogonuki N, Inoue K, Yamamoto Y, et al. Early death of mice cloned from somatic cells. Nat Genet 2002; 30 : 253–4. [Google Scholar]
  50. Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 2004; 14 : 188–95. [Google Scholar]
  51. Mann MR, Chung YG, Nolen LD, et al. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol Reprod 2003; 69 : 902–14. [Google Scholar]
  52. Chavatte-Palmer P, Heyman Y, Richard C, et al. Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells. Biol Reprod 2002; 66 : 1596–603. [Google Scholar]
  53. Rhind SM, King TJ, Harkness LM, et al. Cloned lambs-lessons from pathology. Nat Biotechnol 2003; 21 : 744–5. [Google Scholar]
  54. Young LE, Fairburn HR. Improving the safety of embryo technologies : possible role of genomic imprinting. Theriogenology 2000; 53 : 627–48. [Google Scholar]
  55. Rideout WM, 3rd, Wakayama T, Wutz A, et al. Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet 2000; 24 : 109–10. [Google Scholar]
  56. Kremenskoy M, Kremenska Y, Ohgane J, et al. Genome-wide analysis of DNA methylation status of CpG islands in embryoid bodies, teratomas, and fetuses. Biochem Biophys Res Commun 2003; 311 : 884–90. [Google Scholar]
  57. Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 2002; 132 : 2393S-400S. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.