Accès gratuit
Med Sci (Paris)
Volume 21, Numéro 4, Avril 2005
Page(s) 412 - 421
Section M/S revues
Publié en ligne 15 avril 2005
  1. Holliday R. Epigenetics : an overview. Dev Genet 1994; 15 : 453–7. [Google Scholar]
  2. Sadoni N, Langer S, Fauth C, et al. Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 1999; 146 : 1211–26. [Google Scholar]
  3. Craig JM. Heterochromatin-many flavours, common themes. Bioessays 2005; 27 : 17–28. [Google Scholar]
  4. Western PS, Surani MA. Nuclear reprogramming-alchemy or analysis ? Nat Biotechnol 2002; 20 : 445–6. [Google Scholar]
  5. Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frog’s eggs. Proc Natl Acad Sci USA 1952; 38 : 455–63. [Google Scholar]
  6. Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Dev Biol 1962; 4 : 256–73. [Google Scholar]
  7. Gurdon JB, Uehlinger V. « Fertile » intestine nuclei. Nature 1966; 210 : 1240–1. [Google Scholar]
  8. Jouneau A, Renard JP. Reprogramming in nuclear transfer. Curr Opin Genet Dev 2003; 13 : 486–91. [Google Scholar]
  9. Hiiragi T, Solter D. Reprogramming is essential in nuclear transfer. Mol Reprod Dev 2005; 70 : 417–21. [Google Scholar]
  10. Borsuk E, Szollosi MS, Besomebes D, Debey P. Fusion with activated mouse oocytes modulates the transcriptional activity of introduced somatic cell nuclei. Exp Cell Res 1996; 225 : 93–101. [Google Scholar]
  11. Szollosi D, Czolowska R, Borsuk E, et al. Nuclear envelope removal/maintenance determines the structural and functional remodelling of embryonic red blood cell nuclei in activated mouse oocytes. Zygote 1998; 6 : 65–73. [Google Scholar]
  12. Campbell KH, Loi P, Otaegui PJ, Wilmut I. Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev Reprod 1996; 1 : 40–6. [Google Scholar]
  13. Blau HM, Chiu CP, Webster C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 1983; 32 : 1171–80. [Google Scholar]
  14. Chiu CP, Blau HM. Reprogramming cell differentiation in the absence of DNA synthesis. Cell 1984; 37 : 879–87. [Google Scholar]
  15. Blau HM, Pavlath GK, Hardeman EC, et al. Plasticity of the differentiated state. Science 1985; 230 : 758–66. [Google Scholar]
  16. Ringertz NE, Savage RE. Cell hybrids. New York : Academic press, 1976. [Google Scholar]
  17. Chiu CP, Blau HM. 5-Azacytidine permits gene activation in a previously noninducible cell type. Cell 1985; 40 : 417–24. [Google Scholar]
  18. Hakelien AM, Landsverk HB, Robl JM, et al. Reprogramming fibroblasts to express T-cell functions using cell extracts. Nat Biotechnol 2002; 20 : 460–6. [Google Scholar]
  19. Kimura H, Tada M, Nakatsuji N, Tada T. Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol Cell Biol 2004; 24 : 5710–20. [Google Scholar]
  20. Merriam RW. Movement of cytoplasmic proteins into nuclei induced to enlarge and initiate DNA or RNA synthesis. J Cell Sci 1969; 5 : 333–49. [Google Scholar]
  21. Barry JM, Merriam RW. Swelling of hen erythrocyte nuclei in cytoplasm from Xenopus eggs. Exp Cell Res 1972; 71 : 90–6. [Google Scholar]
  22. Gurdon JB. Injected nuclei in frog oocytes : fate, enlargement, and chromatin dispersal. J Embryol Exp Morphol 1976; 36 : 523–40. [Google Scholar]
  23. Gurdon JB, Laskey RA, De Robertis EM, Partington GA. Reprogramming of transplanted nuclei in amphibia. Int Rev Cytol 1979; 9 (suppl) : 161–78. [Google Scholar]
  24. Gao S, Gasparrini B, McGarry M, et al. Germinal vesicle material is essential for nucleus remodeling after nuclear transfer. Biol Reprod 2002; 67 : 928–34. [Google Scholar]
  25. Wakayama T, Perry AC, Zuccotti M, et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998; 394 : 369–74. [Google Scholar]
  26. Ducibella T, Huneau D, Angelichio E, et al. Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev Biol 2002; 250 : 280–91. [Google Scholar]
  27. Eggan K, Baldwin K, Tackett M, et al. Mice cloned from olfactory sensory neurons. Nature 2004; 428 : 44–9. [Google Scholar]
  28. Vignon X, Zhou Q, Renard JP. Chromatin as a regulative architecture of the early developmental functions of mammalian embryos after fertilization or nuclear transfer. Cloning Stem Cells 2002; 4 : 363–77. [Google Scholar]
  29. Heyman Y, Chavatte-Palmer P, LeBourhis D, et al. Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol Reprod 2002; 66 : 6–13. [Google Scholar]
  30. Gonda K, Fowler J, Katoku-Kikyo N, et al. Reversible disassembly of somatic nucleoli by the germ cell proteins FRGY2a and FRGY2b. Nat Cell Biol 2003; 5 : 205–10. [Google Scholar]
  31. Gao S, Chung YG, Parseghian MH, et al. Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer : evidence for a uniform developmental program in mice. Dev Biol 2004; 266 : 62–75. [Google Scholar]
  32. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69 : 915–26. [Google Scholar]
  33. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99 : 247–57. [Google Scholar]
  34. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16 : 6–21. [Google Scholar]
  35. Mayer W, Niveleau A, Walter J, et al. Demethylation of the zygotic paternal genome. Nature 2000; 403 : 501–2. [Google Scholar]
  36. Rougier N, Bourc’his D, Gomes DM, et al. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev 1998; 12 : 2108–13. [Google Scholar]
  37. Dean W, Santos F, Stojkovic M, et al. Conservation of methylation reprogramming in mammalian development : aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 2001; 98 : 13734–8. [Google Scholar]
  38. Bourc’his D, Le Bourhis D, Patin D, et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol 2001; 11 : 1542–6. [Google Scholar]
  39. Beaujean N, Taylor J, Gardner J, et al. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol Reprod 2004; 71 : 185–93. [Google Scholar]
  40. Beaujean N, Taylor JE, McGarry M, et al. The effect of interspecific oocytes on demethylation of sperm DNA. Proc Natl Acad Sci USA 2004; 101 : 7636–40. [Google Scholar]
  41. Santos F, Zakhartchenko V, Stojkovic M, et al. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 2003; 13 : 1116–21. [Google Scholar]
  42. Humpherys D, Eggan K, Akutsu H, et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci USA 2002; 99 : 12889–94. [Google Scholar]
  43. Niemann H, Wrenzycki C, Lucas-Hahn A, et al. Gene expression patterns in bovine in vitro-produced and nuclear transfer-derived embryos and their implications for early development. Cloning Stem Cells 2002; 4 : 29–38. [Google Scholar]
  44. Daniels R, Hall V, Trounson AO. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei. Biol Reprod 2000; 63 : 1034–40. [Google Scholar]
  45. Gao S, Chung YG, Williams JW, et al. Somatic cell-like features of cloned mouse embryos prepared with cultured myoblast nuclei. Biol Reprod 2003; 69 : 48–56. [Google Scholar]
  46. Arat S, Rzucidlo SJ, Stice SL. Gene expression and in vitro development of inter-species nuclear transfer embryos. Mol Reprod Dev 2003; 66 : 334–42. [Google Scholar]
  47. De Sousa PA, King T, Harkness L, et al. Evaluation of gestational deficiencies in cloned sheep fetuses and placentae. Biol Reprod 2001; 65 : 23–30. [Google Scholar]
  48. Shiota K, Yanagimachi R. Epigenetics by DNA methylation for development of normal and cloned animals. Differentiation 2002; 69 : 162–6. [Google Scholar]
  49. Ogonuki N, Inoue K, Yamamoto Y, et al. Early death of mice cloned from somatic cells. Nat Genet 2002; 30 : 253–4. [Google Scholar]
  50. Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 2004; 14 : 188–95. [Google Scholar]
  51. Mann MR, Chung YG, Nolen LD, et al. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol Reprod 2003; 69 : 902–14. [Google Scholar]
  52. Chavatte-Palmer P, Heyman Y, Richard C, et al. Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells. Biol Reprod 2002; 66 : 1596–603. [Google Scholar]
  53. Rhind SM, King TJ, Harkness LM, et al. Cloned lambs-lessons from pathology. Nat Biotechnol 2003; 21 : 744–5. [Google Scholar]
  54. Young LE, Fairburn HR. Improving the safety of embryo technologies : possible role of genomic imprinting. Theriogenology 2000; 53 : 627–48. [Google Scholar]
  55. Rideout WM, 3rd, Wakayama T, Wutz A, et al. Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet 2000; 24 : 109–10. [Google Scholar]
  56. Kremenskoy M, Kremenska Y, Ohgane J, et al. Genome-wide analysis of DNA methylation status of CpG islands in embryoid bodies, teratomas, and fetuses. Biochem Biophys Res Commun 2003; 311 : 884–90. [Google Scholar]
  57. Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 2002; 132 : 2393S-400S. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.