Free Access
Issue
Med Sci (Paris)
Volume 20, Number 8-9, Août-Septembre 2004
Page(s) 761 - 766
Section M/S revues
DOI https://doi.org/10.1051/medsci/2004208-9761
Published online 15 August 2004
  1. Clutton-Brock J. Origins of the dog : domestication and early history. In : Serpell J., ed. The domestic dog, its evolution, behaviour and interactions with people. New York : Cambridge University Press, 1995 : 7–20. [Google Scholar]
  2. Leonard JA, Wayne RK, Wheeler J, et al. Ancient DNA evidence for old world origin of new world dogs. Science 2002; 298 : 1613–6. [Google Scholar]
  3. Savolainen P, Zhang YP, Luo J, et al. Genetic evidence for an East Asian origin of domestic dogs. Science 2002; 298 : 1610–3. [Google Scholar]
  4. Vila C, Savolainen P, Maldonado JE, et al. Multiple and ancient origins of the domestic dog. Science 1997; 276 : 1687–9. [Google Scholar]
  5. Hare B, Brown M, Williamson C, Tomasello M. The domestication of social cognition in dogs. Science 2002; 298 : 1634–6. [Google Scholar]
  6. Kaminski J, Call J, Fischer J. Word learning in a domestic dog : evidence for « fast mapping ». Science 2004; 304 : 1682–3. [Google Scholar]
  7. Wayne RK, Vila C. Phylogeny and origin of the domestic dog. In : A. Ruvinsky and J. Sampson, eds. The genetics of the dogs, CABI publishers, 2001 : 1–14. [Google Scholar]
  8. Coppinger R. Dogs : a new understanding of canin origin, behaviour and evolution. Chicago University Press, 2001. [Google Scholar]
  9. Parker HG, Kim LV, Sutter NB, et al. Genetic structure of the purebred domestic dog. Science 2004; 304 : 1160–4. [Google Scholar]
  10. Ostrander EA,Giniger, E. Semper fidelis : what man’s best friend can teach us about human biology and disease. Am J Hum Genet 1997; 61 : 475–80. [Google Scholar]
  11. Galibert F, André C, Chéron A, et al. Intérêt du modèle canin pour la génétique médicale. Bull Acad Natl Med 1998; 182 : 818–21. [Google Scholar]
  12. Ostrander EA, Galibert F, Patterson DF. Canine genetics comes of age. Trends Genet 2000; 16 : 117–23. [Google Scholar]
  13. Galibert F, André C. Le génome du chien : un modèle alternatif pour l’analyse fonctionnelle des gènes de mammifères. Bull Acad Natl Med 2002; 186 1489–99. [Google Scholar]
  14. OMIA : On line mendelian inheritance in animals : http://morgan.angis.su.oz.au/Databases/BIRX/omia/ [Google Scholar]
  15. Ettinger SJ, Feldman EC. Texbook of veterinary internal medecine. Saunders publisher, Fourth Edition 1995 : 2 145 p. [Google Scholar]
  16. Patterson DF. Companion animal medicine in the age of animal genetics. J Vet Intern Med 2000; 14 : 1–9. [Google Scholar]
  17. Cargill EJ, Famula TR, Strain GM, Murphy KE. Heritability and segregation analysis of deafness in US Dalmatians. Genetics 2004; 166 : 1385–93. [Google Scholar]
  18. RetNet : Gènes et locus impliqués dans des anomalies de la rétine :http://www.sph.uth.tmc.edu/Retnet/. [Google Scholar]
  19. Lin CT, Gould DJ, Petersen-Jones SM, Sargan DR. Canine inherited retinal degenerations : update on molecular genetic research and its clinical application. J Small Animal Practice 2002; 43 : 426–32. [Google Scholar]
  20. van De Sluis B, Rothuizen J, Pearson PL, et al. Identification of a new copper metabolism gene by positional cloning in a purebred dog population. Hum Mol Genet 2002; 11 : 165–73. [Google Scholar]
  21. Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999; 98 : 365–76. [Google Scholar]
  22. Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000; 6 : 991–7. [Google Scholar]
  23. Herzog RW, Yang EY, Couto LB, et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 1999; 5 : 21–2. [Google Scholar]
  24. Bartlett RJ, Stockinger S, Denis MM, et al. In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide. Nat Biotechnol 2000; 18 : 615–22. [Google Scholar]
  25. Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in canine model of chilhood blindness. Nat Genet 2001; 28 : 92–5. [Google Scholar]
  26. Ponder KP, Melniczek JR, Xu L, et al. Therapeutic neonatal hepatic gene therapy in mucopolysaccharidosis VII dogs. Proc Natl Acad Sci USA 2002; 99 : 13102–7. [Google Scholar]
  27. Lingaas F, Sorensen A, Juneja RK, et al. Towards construction of a canine linkage map : establishment of 16 linkage groups. Mamm Genome 1997; 8 : 218–21. [Google Scholar]
  28. Mellersh CS, Langston AA, Acland C, et al. A linkage map of the canine genome. Genomics 1997; 46 : 326–36. [Google Scholar]
  29. Walter MA, Spillett DJ, Thomas P, et al. A method for constructing radiation hybrid maps of whole genomes. Nat Genet 1994; 7 : 22–8. [Google Scholar]
  30. Vignaux F, Hitte C, Priat C, et al. Construction and optimization of a dog whole-genome radiation hybrid panel. Mamm Genome 1999; 10 : 888–94. [Google Scholar]
  31. Jiang Z, Priat C, Galibert F. Traced orthologous amplified sequence tags (TOASTs) and mammalian comparative maps. Mamm Genome 1998; 9 : 577–87. [Google Scholar]
  32. Priat C, Jiang ZH, Renier C, et al. Characterization of 463 type I markers suitable for dog genome mapping. Mamm Genome 1999; 10 : 803–13. [Google Scholar]
  33. Jouquand S, Priat C, Hitte C, et al. Identification and characterization of a set of 100 tri- and dinucleotide microsatellites in the canine genome. Anim Genet 2000; 31 : 266–72. [Google Scholar]
  34. Priat C, Hitte C, Vignaux F, et al. A whole-genome radiation hybrid map of the dog genome. Genomics 1998; 54 : 361–78. [Google Scholar]
  35. Mellersh CS, Hitte C, Richman M, et al. An integrated linkage-radiation hybrid map of the canine genome. Mamm Genome 2000; 11 : 120–30. [Google Scholar]
  36. Breen M, Jouquand S, Renier C, et al. Chromosome-specific single locus anchorage of a 1 800 marker integrated radiation-hybrid/linkage map of the domestic dog genome to all chromosomes. Genome Res 2001; 11 : 1784–95. [Google Scholar]
  37. Guyon R, Lorentzen TD, Hitte C, et al. A 1 Mb resolution radiation hybrid map of the canine genome. Proc Natl Acad Sci USA 2003; 100 : 5296–301. [Google Scholar]
  38. Données de cartographie du génome canin : http://www-recomgen.univ-rennes1.fr/doggy.html. [Google Scholar]
  39. Kirkness EF, Bafna V, Halpern AL, et al. The dog genome : survey sequencing and comparative analysis. Science 2003; 301 : 1898–903. [Google Scholar]
  40. Ostrander EA, Lindblad-Toh K, Lander ES, et al. Sequencing the genome of the domestic dog Canis familiaris. National Human Genome Research Institute 2002; www.genome.gov. [Google Scholar]
  41. http://www.ensemble.org/Homo_sapiens/ [Google Scholar]
  42. Site NIH http://www.genome.gov/11008069 et Site du Whitehead Institute : http://www.broad.mit.edu/media/2003/pr_03_tasha.html [Google Scholar]
  43. Ostrander EA, Kruglyak L. Unleashing the canine genome. Genome Res 2000; 10 : 1271–4. [Google Scholar]
  44. Suber ML, Pittler SJ, Qin N, et al. Irish setter dogs affected with rod/cone dysplasia contain a nonsense mutation in the rod cGMP phosphodiesterase beta-subunit gene. Proc Natl Acad Sci USA 1993, 90 : 3968–72. [Google Scholar]
  45. Dekomien G, Runte M, Godde R, Epplen JT. Generalized progressive retinal atrophy of Sloughi dogs is due to an 8-bp insertion in exon 21 of the PDE6B gene. Cytogenet Cell Genet 2000; 90 : 261–7. [Google Scholar]
  46. Petersen-Jones SM, Entz DD, Sargan DR. cGMP phosphodiesterase-alpha mutation causes progressive retinal atrophy in the Cardigan Welsh corgi dog. Invest Ophthalmol Vis Sci 1999; 40 : 1637–44. [Google Scholar]
  47. Kijas JW, Cideciyan AV, Aleman TS, et al. Naturally occurring rhodopsin mutation in the dog causes retinal dysfunction and degeneration mimicking human dominant retinitis pigmentosa. Proc Natl Acad Sci USA 2002; 99 : 6328–33. [Google Scholar]
  48. Zhang Q, Acland GM, Parshall CJ, et al. Characterization of canine photoreceptor phosducin cDNA and identification of a sequence variant in dogs with photoreceptor dysplasia. Gene 1998; 215 : 231–9. [Google Scholar]
  49. Zangerl B, Zhang Q, Acland GM, Aguirre GD. Characterization of three microsatellite loci linked to the canine RP3 interval. J Hered 2002; 93 : 70–3. [Google Scholar]
  50. Sidjanin DJ, Lowe JK, McElwee JL, et al. Canine CNGB3 mutations establish cone degeneration as orthologous to the human achromatopsia locus ACHM3. Hum Mol Genet 2002; 11 : 1823–33. [Google Scholar]
  51. Veske A, Nilsson SE, Narfstrom K, Gal A. Retinal dystrophy of Swedish briard/briard-beagle dogs is due to a 4-bp deletion in RPE65. Genomics 1999; 57 : 57–61. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.