Accès gratuit
Med Sci (Paris)
Volume 20, Numéro 8-9, Août-Septembre 2004
Page(s) 767 - 772
Section M/S revues
Publié en ligne 15 août 2004
  1. Dorer DR, Henikoff S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 1994; 77 : 993–1002. [Google Scholar]
  2. Orlando V. Polycomb, epigenomes, and control of cell identity. Cell 2003; 112 : 599–606. [Google Scholar]
  3. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403 : 41–5. [Google Scholar]
  4. Pal-Bhadra M, Bhadra U, Birchler JA. Cosuppression in Drosophila : gene silencing of alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 1997; 90 : 479–90. [Google Scholar]
  5. Stinchcomb DT, Shaw JE, Carr SH, Hirsh D. Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol Cell Biol 1985; 5 : 3484–96. [Google Scholar]
  6. Kelly WG, Schaner CE, Dernburg AF, et al. X-chromosome silencing in the germline of C. elegans. Development 2002; 129 : 479–92. [Google Scholar]
  7. Couteau F, Guerry F, Muller F, Palladino F. A heterochromatin protein 1 homologue in Caenorhabditis elegans acts in germline and vulval development. EMBO Rep 2002; 3 : 235–41. [Google Scholar]
  8. Kelly WG, Fire A. Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development 1998; 125 : 2451–6. [Google Scholar]
  9. Emmons SW, Yesner L. High-frequency excision of transposable element Tc 1 in the nematode Caenorhabditis elegans is limited to somatic cells. Cell 1984; 36 : 599–605. [Google Scholar]
  10. Emmons SW, Roberts S, Ruan KS. Evidence in a nematode for regulation of transposon excision by tissue-specific factors. Mol Gen Genet 1986; 202 : 410–5. [Google Scholar]
  11. Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 1999; 99 : 133–41. [Google Scholar]
  12. Ketting RF, Plasterk RH. A genetic link between co-suppression and RNA interference in C. elegans. Nature 2000; 404 : 296–8. [Google Scholar]
  13. Dernburg AF, Zalevsky J, Colaiacovo MP, Villeneuve AM. Transgene-mediated cosuppression in the C. elegans germ line. Genes Dev 2000; 14 : 1578–83. [Google Scholar]
  14. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391 : 806–11. [Google Scholar]
  15. Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci USA 1998; 95 : 15502–7. [Google Scholar]
  16. Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 2001; 107 : 465–76. [Google Scholar]
  17. Ketting RF, Fischer SE, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15 : 2654–9. [Google Scholar]
  18. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106 : 23–34. [Google Scholar]
  19. Knight SW, Bass BL. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in C. elegans. Science 2001; 2 : 2. [Google Scholar]
  20. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409 : 363–6. [Google Scholar]
  21. Sijen T, Plasterk RH. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 2003; 426 : 310–4. [Google Scholar]
  22. Schmidt A, Palumbo J, Bozetti MP, et al. Genetic and molecular characterization of sting, a gene involved in crystal formation and meiotic drive in the male germ line of Drosophila melanogaster. Genetics 1999; 151 : 749–60. [Google Scholar]
  23. Aravin AA, Naumova NM, Tulin AV, et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 2001; 11 : 1017–27. [Google Scholar]
  24. Tomari Y, Du T, Haley B, et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 2004; 116 : 831–41. [Google Scholar]
  25. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001; 15 : 188–200. [Google Scholar]
  26. Plasterk RH. RNA silencing : The genome’s immune system. Science 2002; 296 : 1263–5. [Google Scholar]
  27. Ambros V. MicroRNAs : Tiny regulators with great potential. Cell 2001; 107 : 823–6. [Google Scholar]
  28. Lin SY, Johnson SM, Abraham M, et al. The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 2003; 4 : 639–50. [Google Scholar]
  29. Dudley NR, Labbe JC, Goldstein B. Using RNA interference to identify genes required for RNA interference. Proc Natl Acad Sci USA 2002; 99 : 4191–6. [Google Scholar]
  30. Pal-Bhadra M, Bhadra U, Birchler JA. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell 2002; 9 : 315–27. [Google Scholar]
  31. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002; 3 : 737–47. [Google Scholar]
  32. Hu WY, Myers CP, Kilzer JM, et al. Inhibition of retroviral pathogenesis by RNA interference. Curr Biol 2002; 12 : 1301–11. [Google Scholar]
  33. Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 2002; 418 : 430–4. [Google Scholar]
  34. Caudy AA, Ketting RF, Hammond SH, et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature 2003; 425 : 411–4. [Google Scholar]
  35. Tijsterman M, Ketting RF, Okihara KL, et al. RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs. Science 2002; 295 : 694–7. [Google Scholar]
  36. Tabara H, Yigit E, Siomi H, et al. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 2002; 109 : 861–71. [Google Scholar]
  37. Williams RW, Rubin GM. ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci USA 2002; 99 : 6889–94. [Google Scholar]
  38. Hammond SM, Boettcher S, Caudy AA, et al. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 2001; 293 : 1146–50. [Google Scholar]
  39. Kennerdell JR, Yamaguchi S, Carthew RW. RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes Dev 2002; 16 : 1884–9. [Google Scholar]
  40. Pal-Bhadra M, Bhadra U, Birchler JA. Cosuppression of nonhomologous transgenes in Drosophila involves mutually related endogenous sequences. Cell 1999; 99 : 35–46. [Google Scholar]
  41. Sarot E, Payen-Groschene G, Bucheton A, Pelisson A. Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics 2004; 166 : 1313–21. [Google Scholar]
  42. Ishizuka A, Siomi MC, Siomi H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 2002; 16 : 2497–508. [Google Scholar]
  43. Cook HA, Koppetsch BS, Wu J, Theurkauf WE. The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell 2004; 116 : 817–29. [Google Scholar]
  44. audy AA, Myers M, Hannon GJ, Hammond SM. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 2002; 16 : 2491–6. [Google Scholar]
  45. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi : Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000; 101 : 25–33. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.