Accès gratuit
Med Sci (Paris)
Volume 20, Numéro 4, Avril 2004
Page(s) 409 - 413
Section M/S revues
Publié en ligne 15 avril 2004
  1. Goldblatt H. The renal origin of hypertension. Physiol Rev 1947; 27 : 120–65. [Google Scholar]
  2. van Kesteren CA, Danser AH, Derkx FH, et al. Mannose 6-phosphate receptor-mediated internalization and activation of prorenin by cardiac cells. Hypertension 1997; 30 : 1389–96. [Google Scholar]
  3. de Lannoy LM, Danser AH, van Kats JP, et al. Renin-angiotensin system components in the interstitial fluid of the isolated perfused rat heart. Local production of angiotensin I. Hypertension 1997; 29 : 1240–51. [Google Scholar]
  4. Nguyen G, Delarue F, Burckle C, et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 2002; 109 : 1417–27. [Google Scholar]
  5. Coulet F, Gonzalez W, Boixel C, et al. Endothelium-independent conversion of angiotensin I by vascular smooth muscle cells. Cell Tissue Res 2001; 303 : 227–34. [Google Scholar]
  6. Levy BI. Can angiotensin II type 2 receptors have deleterious effects in cardiovascular disease ? Implications for therapeutic blockade of the renin-angiotensin system. Circulation 2004; 109 : 8–13. [Google Scholar]
  7. Pueyo ME, N’Diaye N, Michel JB. Angiotensin II-elicited signal transduction via AT1 receptors in endothelial cells. Br J Pharmacol 1996; 118 : 79–84. [Google Scholar]
  8. Berk BC, Corson MA. Angiotensin II signal transduction in vascular smooth muscle : role of tyrosine kinases. Circ Res 1997; 80 : 607–16. [Google Scholar]
  9. Weigert C, Brodbeck K, Klopfer K, et al. Angiotensin II induces human TGF-beta 1 promoter activation : similarity to hyperglycaemia. Diabetologia 2002; 45 : 890–8. [Google Scholar]
  10. Griendling KK, Ushio-Fukai M. Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept 2000; 91 : 21–7. [Google Scholar]
  11. Pagano PJ, Chanock SJ, Siwik DA, et al. Angiotensin II induces p67phox mRNA expression and NADPH oxidase superoxide generation in rabbit aortic adventitial fibroblasts. Hypertension 1998; 32 : 331–7. [Google Scholar]
  12. Kranzhofer R, Schmidt J, Pfeiffer CA, et al. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999; 19 : 1623–9. [Google Scholar]
  13. Brown NJ, Vaughan DE. Prothrombotic effects of angiotensin. Adv Intern Med 2000; 45 : 419–29. [Google Scholar]
  14. Pueyo ME, Gonzalez W, Nicoletti A, et al. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 2000; 20 : 645–51. [Google Scholar]
  15. Brilla CG, Zhou G, Matsubara L, Weber KT. Collagen metabolism in cultured adult rat cardiac fibroblasts : response to angiotensin II and aldosterone. J Mol Cell Cardiol 1994; 26 : 809–20. [Google Scholar]
  16. Brown NJ, Kumar S, Painter CA, Vaughan DE. ACE inhibition versus angiotensin type 1 receptor antagonism : differential effects on PAI-1 over time. Hypertension 2002; 40 : 859–65. [Google Scholar]
  17. Henrion D, Dowell FJ, Levy BI, Michel JB. In vitro alteration of aortic vascular reactivity in hypertension induced by chronic NG-nitro-L-arginine methyl ester. Hypertension 1996; 28 : 361–6. [Google Scholar]
  18. Pagano PJ, Clark JK, Cifuentes-Pagano ME, et al. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia : enhancement by angiotensin II. Proc Natl Acad Sci USA 1997; 94 : 14483–8. [Google Scholar]
  19. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345 : 851–60. [Google Scholar]
  20. Parving HH, Lehnert H, Brochner-Mortensen J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001; 345 : 870–8. [Google Scholar]
  21. Marre M, Jeunemaitre X, Gallois Y, et al. Contribution of genetic polymorphism in the renin-angiotensin system to the development of renal complications in insulin-dependent diabetes : génétique de la néphropathie diabétique (GENEDIAB) study group. J Clin Invest 1997; 99 : 1585–95. [Google Scholar]
  22. Pueyo ME, Challah, M, Gaugier, D, et al. TGF-béta1 production is correlated with genetically determined angiotensin-converting enzyme expression in congenic rats. Diabetes 2004 (sous presse). [Google Scholar]
  23. Yamada H, Fabris B, Allen AM, et al. Localization of angiotensin converting enzyme in rat heart. Circ Res 1991; 68 : 141–9. [Google Scholar]
  24. Brien KD, Shavelle DM, Caulfield MT, et al. Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma. Circulation 2002; 106 : 2224–30. [Google Scholar]
  25. Johnston CI, Mooser V, Sun Y, Fabris B. Changes in cardiac angiotensin converting enzyme after myocardial infarction and hypertrophy in rats. Clin Exp Pharmacol Physiol 1991; 18 : 107–10. [Google Scholar]
  26. Gaertner R, Prunier F, Philippe M, et al. Scar and pulmonary expression and shedding of ACE in rat myocardial infarction. Am J Physiol Heart Circ Physiol 2002; 283 : H156–64. [Google Scholar]
  27. Sun Y, Zhang JQ, Zhang J, Ramires FJ. Angiotensin II, transforming growth factor-beta1 and repair in the infarcted heart. J Mol Cell Cardiol 1998; 30 : 1559–69. [Google Scholar]
  28. Challah M, Villard E, Philippe M, et al. Angiotensin I-converting enzyme genotype influences arterial response to injury in normotensive rats. Arterioscler Thromb Vasc Biol 1998; 18 : 235–43. [Google Scholar]
  29. Amant C, Bauters C, Bodart JC, et al. Dallele of the angiotensin I-converting enzyme is a major risk factor for restenosis after coronary stenting. Circulation 1997; 96 : 56–60. [Google Scholar]
  30. Paragh G, Szabo J, Kovacs E, et al. Altered signal pathway in angiotensin II-stimulated neutrophils of patients with hypercholesterolaemia. Cell Signal 2002; 14 : 787–92. [Google Scholar]
  31. Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 2000; 105 : 1605–12. [Google Scholar]
  32. Wang YX, Martin-McNulty B, Freay AD, et al. Angiotensin II increases urokinase-type plasminogen activator expression and induces aneurysm in the abdominal aorta of apolipoprotein E-deficient mice. Am J Pathol 2001; 159 : 1455–64. [Google Scholar]
  33. Manning MW, Cassi LA, Huang J, et al A. Abdominal aortic aneurysms : fresh insights from a novel animal model of the disease. Vasc Med 2002; 7 : 45–54. [Google Scholar]
  34. Dol F, Martin G, Staels B, et al. Angiotensin AT1 receptor antagonist irbesartan decreases lesion size, chemokine expression, and macrophage accumulation in apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 2001; 38 : 395–405. [Google Scholar]
  35. Menard J, Campbell DJ, Azizi M, Gonzales MF. Synergistic effects of ACE inhibition and Ang II antagonism on blood pressure, cardiac weight, and renin in spontaneously hypertensive rats. Circulation 1997; 96 : 3072–8. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.