Free Access
Med Sci (Paris)
Volume 20, Number 4, Avril 2004
Page(s) 414 - 423
Section M/S revues
Published online 15 April 2004
  1. Riechmann V, Ephrussi A. Axis formation during Drosophila oogenesis. Curr Opin Genet Dev 2001; 11 : 374–83. [Google Scholar]
  2. Huynh JR. Cell polarity and oocyte determination in Drosophila melanogaster. J Soc Biol 2003; 197 : 9–15. [Google Scholar]
  3. Gilbert SF. Developmental biology. Sunderland, Massachusetts : Sinauer associates Inc, 2000 : 749. [Google Scholar]
  4. Wolpert L. Principles of development. New York : Oxford University Press Inc, 2002 : 542. [Google Scholar]
  5. Prodon F, Prulière, G, Chenevert, J, Sardet, C. Établissement et expression des axes embryonnaires : comparaisons entre différents organismes modèles. Med Sci (Paris) 2004; 20 (sous presse). [Google Scholar]
  6. Gilbert S. Biologie du développement. Paris : De Boeck, Université, 1996. [Google Scholar]
  7. Wolpert l. Biologie du développement. Les grands principes. Paris : Dunod, 1996. [Google Scholar]
  8. Wodarz A. Establishing cell polarity in development. Nat Cell Biol 2002; 4 : E39–44. [Google Scholar]
  9. Pellettieri J, Seydoux G. Anterior-posterior polarity in C. elegans and Drosophila. PARallels and differences. Science 2002; 298 : 1946–50. [Google Scholar]
  10. Felix MA, Labouesse M, Ségalat L. Caenorhabditis elegans, un organisme modèle en biologie. Paris : Dunod, 2002 : 208. [Google Scholar]
  11. Pourquié O. Biologie du développement. Paris : Hermann, 2002. [Google Scholar]
  12. Van Eeden F, St Johnston D. The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis. Curr Op Gen Dev 1999; 9 : 396–404. [Google Scholar]
  13. Shulman JM, Benton R, St Johnston D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 2000; 101 : 377–88. [Google Scholar]
  14. Bolivar J, Huynh JR, Lopez-Schier H, et al. Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton. Development 2001; 128 : 1889–97. [Google Scholar]
  15. Navarro C, Lehmann R, Morris J. Oogenesis : setting one sister above the rest. Curr Biol 2001; 11 : R162–5. [Google Scholar]
  16. Mahajan-Miklos S, Cooley L. Intercellular cytoplasm transport during Drosophila oogenesis. Dev Biol 1994; 165 : 336–51. [Google Scholar]
  17. Tomancak P, Piano F, Riechmann V, et al. A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation. Nat Cell Biol 2000; 2 : 458–60. [Google Scholar]
  18. Vaccari T, Ephrussi A. The fusome and microtubules enrich Par-1 in the oocyte, where it effects polarization in conjunction with Par-3, BicD, Egl, and dynein. Curr Biol 2002; 12 : 1524–8. [Google Scholar]
  19. Benton R, Palacios IM, Johnston DS. Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Dev Cell 2002; 3 : 659–71. [Google Scholar]
  20. Megraw T, Kaufman TC. The centrosome in Drosophila oocyte development. Curr Top Dev Biol 2000; 49 : 385–407. [Google Scholar]
  21. Cha BJ, Serbus LR, Koppetsch BS, Theurkauf WE. Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat Cell Biol 2002; 4 : 592–8. [Google Scholar]
  22. Swan A, Nguyen T, Suter B. Drosophila lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nat Cell Biol 1999; 1 : 444–9. [Google Scholar]
  23. Cha B, Koppetsch BS, Theurkauf WE. In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell 2001; 106 : 35–46. [Google Scholar]
  24. Wilsch-Brauninger M, Schwarz H, Nüsslein-Volhard C. A sponge-like structure involved in the association and transport of maternal products during Drosophila oogenesis. J Cell Biol 1997; 139 : 817–29. [Google Scholar]
  25. Schnorrer F, Bohmann K, Nüsslein-Volhard C. The molecular motor dynein is involved in targeting swallow and bicoid RNA to the anterior pole of Drosophila oocytes. Nat Cell Biol 2000; 2 : 185–90. [Google Scholar]
  26. Ephrussi A, Lehman R. Induction of germ cell formation by oskar. Nature 1992; 358 : 387–92. [Google Scholar]
  27. Ikenishi K. Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev Growth Differ 1998; 40 : 1–10. [Google Scholar]
  28. Johnstone O, Lasko P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet 2001; 35 : 365–406. [Google Scholar]
  29. Filardo P, Ephrussi A. Bruno regulates gurken during Drosophila oogenesis. Mech Dev 2003; 120 : 289–97. [Google Scholar]
  30. Anderson KV. Pinning down positional informatio : dorsal-ventral polarity in the Drosophila embryo. Cell 1998; 95 : 439–42. [Google Scholar]
  31. Houchmandzadeh B, Wieschaus E, Leibler S. Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 2002; 415 : 798–802. [Google Scholar]
  32. Dissing M, Giordano H, DeLotto R. Autoproteolysis and feedback in a protease cascade directing Drosophila dorsal-ventral cell fate. EMBO J 2001; 20 : 2387–93. [Google Scholar]
  33. Samuel AD, Murthy VN, Hengartner MO. Calcium dynamics during fertilization in C. elegans. BMC Dev Biol 2001; 1 : 8. [Google Scholar]
  34. Goldstein B. Embryonic polarity : a role for microtubules. Curr Biol 2000; 10 : R820–2. [Google Scholar]
  35. Lyczak R, Gomes JE, Bowerman B. Heads or tails : cell polarity and axis formation in the early Caenorhabditis elegans embryo. Dev Cell 2002; 3 : 157–66. [Google Scholar]
  36. Cuenca AA, Schetter A, Aceto D, et al. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development 2003; 130 : 1255–65. [Google Scholar]
  37. Golden A. Cytoplasmic flow and the establishment of polarity in C. elegans 1-cell embryos. Curr Opin Genet Dev 2000; 10 : 414–20. [Google Scholar]
  38. Gonczy P. Mechanisms of spindle positioning : focus on flies and worms. Trends Cell Biol 2002; 12 : 332–9. [Google Scholar]
  39. Schubert CM, Lin R, de Vries CJ, et al. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol Cell 2000; 5 : 671–82. [Google Scholar]
  40. Goldstein B. When cells tell their neighbors which direction to divide. Dev Dyn 2000; 218 : 23–9. [Google Scholar]
  41. Sardet C, McDougall A, Houliston E. Cytoplasmic domains in egg. Trends Cell Biol 1994; 4 : 166–71. [Google Scholar]
  42. Sardet C, Speksnijder J, Terasaki M, Chang P. Polarity of the ascidian egg cortex before fertilization. Development 1992; 115 : 221–37. [Google Scholar]
  43. Nishida H. Specification of developmental fates in ascidian embryos : molecular approach to maternal determinants and signaling molecules. Int Rev Cytol 2002; 217 : 227–76. [Google Scholar]
  44. Sardet C, Nishida H, Prodon F, Sawada K. Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex. Development 2003; 130 : 5839–49. [Google Scholar]
  45. Roegiers F, Djediat C, Dumollard R, et al. Phases of cytoplasmic and cortical reorganizations of the ascidian zygote between fertilization and first division. Development 1999; 126 : 3101–17. [Google Scholar]
  46. Roegiers F, McDougall A, Sardet C. The sperm entry point defines the orientation of the calcium-induced contraction wave that directs the first phase of cytoplasmic reorganization in the ascidian egg. Development 1995; 121 : 3457–66. [Google Scholar]
  47. Chiba S, Miki Y, Ashida K, et al. Interactions between cytoskeletal components during myoplasm rearrangement in ascidian eggs. Dev Growth Differ 1999; 41 : 265–72. [Google Scholar]
  48. Nishida H, Sawada K. Macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature 2001; 409 : 724–9. [Google Scholar]
  49. Nishikata T, Hibino T, Nishida H. The centrosome-attracting body, microtubule system, and posterior egg cytoplasm are involved in positioning of cleavage planes in the ascidian embryo. Dev Biol 1999; 209 : 72–85. [Google Scholar]
  50. Gard DL. Confocal microscopy and 3-D reconstruction of the cytoskeleton of Xenopus oocytes. Microsc Res Tech 1999; 44 : 388–14. [Google Scholar]
  51. Chang P, Perez-Mongiovi D, Houliston E. Organisation of Xenopus oocyte and egg cortices. Microsc Res Tech 1999; 44 : 415–29. [Google Scholar]
  52. Kloc M, Bilinski S, Chan AP, et al. RNA localization and germ cell determination in Xenopus. Int Rev Cytol 2001; 203 : 63–91. [Google Scholar]
  53. Kloc M, Dougherty MT, Bilinski S, et al. Three-dimensional ultrastructural analysis of RNA distribution within germinal granules of Xenopus. Dev Biol 2002; 241 : 79–93. [Google Scholar]
  54. MacArthur H, Bubunenko M, Houston DW, King ML. Xcat-2 RNA is a translationally sequestered germ plasm component in Xenopus. Mech Dev 1999; 84 : 75–88. [Google Scholar]
  55. Houston DW, King ML. Germ plasm and molecular determinants of germ cell fate. Curr Top Dev Biol 2000; 50 : 155–81. [Google Scholar]
  56. King ML, Zhou Y, Bubunenko M. Polarizing genetic information in the egg : RNA localization in the frog oocyte. BioEssays 1999; 21 : 546–557. [Google Scholar]
  57. Xanthos JB, Kofron M, Wylie C, Heasman J. Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 2001; 128 : 167–80. [Google Scholar]
  58. Zhang J, Houston DW, King ML, et al. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 1998; 94 : 515–24. [Google Scholar]
  59. Cheer A, Vincent JP, Nuccitelli R, Oster G. Cortical activity in vertebrate eggs. I : the activation waves. J Theor Biol 1987; 124 : 377–404. [Google Scholar]
  60. Larabell CA, Torres M, Rowning BA, et al. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J Cell Biol 1997; 136 : 1123–6. [Google Scholar]
  61. Marrari Y, Terasaki M, Arrowsmith V, Houliston E. Local inhibition of cortical rotation in Xenopus eggs by an anti-KRP antibody. Dev Biol 2000; 224 : 250–62. [Google Scholar]
  62. Marrari Y, Clarke EJ, Rouviere C, Houliston E. Analysis of microtubule movement on isolated Xenopus egg cortices provides evidence that the cortical rotation involves dynein as well as kinesin related proteins and is regulated by local microtubule polymerisation. Dev Biol 2003; 257 : 55–70. [Google Scholar]
  63. Marikawa Y, Elinson RP. Relationship of vegetal cortical dorsal factors in the Xenopus egg with the Wnt/beta-catenin signaling pathway. Mech Dev 1999; 89 : 93–102. [Google Scholar]
  64. Miller JR, Rowning BA, Larabell CA, et al. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J Cell Biol 1999; 146 : 427–37. [Google Scholar]
  65. Stricker SA. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol 1999; 211 : 157–76. [Google Scholar]
  66. Goldstein B, Hird SN. Specification of the anteroposterior axis in Caenorhabditis elegans. Development 1996; 122 : 1467–74. [Google Scholar]
  67. Nishida H. Cell fate specification by localized cytoplasmic determinants and cell interactions in ascidian embryos. Int Rev Cytol 1997; 176 : 245–306. [Google Scholar]
  68. Beckhelling C, Perez-Mongiovi D, Houliston E. Localised MPF regulation in eggs. Biol Cell 2000; 92 : 245–53. [Google Scholar]
  69. Perez-Mongiovi D, Beckhelling C, Chang P, et al. Nuclei and microtubule asters stimulate maturation/M phase promoting factor (MPF) activation in Xenopus eggs and egg cytoplasmic extracts. J Cell Biol 2000; 150 : 963–74. [Google Scholar]
  70. Lane J, Allan V. Microtubule-based membrane movement. Biochim Biophy Acta 1998; 1376 : 27–55. [Google Scholar]
  71. Addinall SG, Mayr PS, Doyle S, et al. Phosphorylation by cdc2-CyclinB1 kinase releases cytoplasmic dynein from membranes. J Biol Chem 2001; 276 : 15939–44. [Google Scholar]
  72. Woodruff RI, Telfer WH. Electrophoresis of proteins in intercellular bridges. Nature 1980; 286 : 84–6. [Google Scholar]
  73. Terasaki M, Runft LL, Hand AR. Changes in organization of the endoplasmic reticulum during Xenopus oocyte maturation and activation. Mol Biol Cell 2001; 12 : 1103–16. [Google Scholar]
  74. Child CM. Patterns and problems of development. Chicago, 1941. [Google Scholar]
  75. Horstadius S. Experimental embryology of echinoderms. London : Clarendon Press, 1973. [Google Scholar]
  76. Akiyama T, Okada M. Spatial and developmental changes in the respiratory activity of mitochondria in early Drosophila embryos. Development 1992; 115 : 1175–82. [Google Scholar]
  77. Coffman JA, Davidson EH. Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry. Dev Biol 2001; 230 : 18–28. [Google Scholar]
  78. Sardet C, Prodon F, Dumollard R, et al. Structure and function of the egg cortex from oogenesis through fertilization. Dev Biol 2002; 241 : 1–23. [Google Scholar]
  79. Grill SW, Gonczy P, Stelzer EH, Hyman AA. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 2001; 409 : 630–3. [Google Scholar]
  80. Benink HA, Mandato CA, Bement WM. Analysis of cortical flow models in vivo. Mol Biol Cell 2000; 11 : 2553–63. [Google Scholar]
  81. Kloc M, Zearfoss NR, Etkin LD. Mechanisms of subcellular mRNA localization. Cell 2002; 108 : 533–44. [Google Scholar]
  82. Jansen RP. mRNA localization : message on the move. Nat Rev Mol Cell Biol 2001; 2 : 247–56. [Google Scholar]
  83. Palacios IM. RNA processing : splicing and the cytoplasmic localisation of mRNA. Curr Biol 2002; 12 : R50–2. [Google Scholar]
  84. Grieder NC, De Cuevas M, Spradling AC. The fusome organizes the microtubule network during ooctyte differentiation in Drosophila. Development 2000; 127 : 4253–64. [Google Scholar]
  85. Alarcon VB, Elinson RP. RNA anchoring in the vegetal cortex of the Xenopus oocyte. J Cell Sci 2001; 114 : 1731–41. [Google Scholar]
  86. Macdonald P. Diversity in translational regulation. Curr Opin Cell Biol 2001; 13 : 326–31. [Google Scholar]
  87. Jankovics F, Sinka R, Erdelyi M. An interaction type of genetic screen reveals a role of the Rab11 gene in oskar mRNA localization in the developing Drosophila melanogaster oocyte. Genetics 2001; 158 : 1177–88. [Google Scholar]
  88. Rappleye CA, Paredez AR, Smith CW, et al. The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev 1999; 13 : 2838–51. [Google Scholar]
  89. Bretscher MS. Expression and changing distribution of the human transferrin receptor in developing Drosophila oocytes and embryos. J Cell Sci 1996; 109 : 3113–9. [Google Scholar]
  90. Lipschutz JH, Lingappa VR, Mostov KE. The excocyst affects protein synthesis by acting on the translocation machinery of the endoplasmic reticulum. J Biol Chem 2003; 278 : 20954–60. [Google Scholar]
  91. Betley JN, Frith MC, Graber JH, et al. A ubiquitous and conserved signal for RNA localization in chordates. Curr Biol 2002; 12 : 1756–61. [Google Scholar]
  92. Ohno S. Intercellular junctions and cellular polarity : the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol 2001; 13 : 641–8. [Google Scholar]
  93. Nakaya M, Fukui A, Izumi Y, et al. Meiotic maturation induces animal-vegetal asymmetric distribution of aPKC and ASIP/PAR-3 in Xenopus oocytes. Development 2000; 127 : 5021–31. [Google Scholar]
  94. Ahringer J. Control of cell polarity and mitotic spindle positioning in animal cells. Curr Opin Cell Biol 2003; 15 : 73–81. [Google Scholar]
  95. Riechmann V, Gutierrez GJ, Filardo P, et al. Par-1 regulates stability of the posterior determinant Oskar by phosphorylation. Nat Cell Biol 2002; 4 : 337–42. [Google Scholar]
  96. Sun TQ, Lu B, Feng JJ, et al. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nat Cell Biol 2001; 3 : 628–36. [Google Scholar]
  97. Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980; 287 : 795–801. [Google Scholar]
  98. Kemphues K. PARsing embryonic polarity. Cell 2000; 101 : 345–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.