Accès gratuit
Med Sci (Paris)
Volume 19, Numéro 11, Novembre 2003
Page(s) 1128 - 1136
Section M/S Revues
Publié en ligne 15 novembre 2003
  1. Viallard JF, Lacombe F, Belloc F, Pellegrin JL, Reiffers J. Mécanismes moléculaires contrôlant le cycle cellulaire: aspects fondamentaux et implications en oncologogie. Cancer Radiother 2001; 5: 109–29. [Google Scholar]
  2. Thuret JY, Mann C. Kinases activatrices de la division cellulaire: in vivo veritas ? Med Sci 1998; 14: 215–8. [Google Scholar]
  3. Hulleman E, Boonstra J. Regulation of G1 phase progression by growth factors and the extracellular matrix. Cell Mol Life Sci 2001; 58: 80- 93. [Google Scholar]
  4. Fishman DD, Segal S, Livneh E. The role of protein kinase C in G1 and G2/M phases of the cell cycle. Int J Oncol 1998; 12: 181–6. [Google Scholar]
  5. Jayadev S, Liu B, Bielawska AE, et al. Role for ceramide in cell cycle arrest. J Biol Chem 1995; 270: 2047–52. [Google Scholar]
  6. Pearce AK, Humphrey TC. Integrating stress-response and cell-cycle checkpoint pathways. Trends Cell Biol 2001; 11: 426–33. [Google Scholar]
  7. Takenaka K, Moriguchi T, Nishida E. Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 1998; 280: 599–602. [Google Scholar]
  8. De Rycke J, Oswald E. Cytolethal distending toxin (CDT): a bacterial weapon to control host cell proliferation ? FEMS Microbiol Lett 2001; 203: 141–8. [Google Scholar]
  9. Comayras C, Tasca C, Peres SY, Ducommun B, Oswald E, De Rycke J. Escherichia coli cytolethal distending toxin blocks the HeLa cell cycle at the G2/M transition by preventing cdc2 protein kinase dephosphorylation and activation. Infect Immun 1997; 65: 5088–95. [Google Scholar]
  10. Sert V, Cans C, Tasca C, et al. The bacterial cytolethal distending toxin (CDT) triggers a G2 cell cycle checkpoint in mammalian cells without preliminary induction of DNA strand breaks. Oncogene 1999; 18: 6296–304. [Google Scholar]
  11. Escalas N, Davezac N, De Rycke J, Baldin V, Mazars R, Ducommun B. Study of the cytolethal distending toxin-induced cell cycle arrest in HeLa cells: involvement of the CDC25 phosphatase. Exp Cell Res 2000; 257: 206–12. [Google Scholar]
  12. Cortes-Bratti X, Karlsson C, Lagergard T, Thelestam M, Frisan T. The Haemophilus ducreyi cytolethal distending toxin induces cell cycle arrest and apoptosis via the DNA damage checkpoint pathways. J Biol Chem 2001; 276: 5296–302. [Google Scholar]
  13. Alby F, Mazars R, De Rycke J, et al. Study of the cytolethal distending toxin (CDT)-activated cell cycle checkpoint. Involvement of the CHK2 kinase. FEBS Lett 2001; 491: 261–5. [Google Scholar]
  14. Li L, Sharipo A, Chaves- Olarte E, et al. The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells. Cell Microbiol 2002; 4: 87–99. [Google Scholar]
  15. Sugai M, Kawamoto T, Peres SY, et al. The cell cyclespecific growth-inhibitory factor produced by Actinobacillus actinomycetemcomitans is a cytolethal distending toxin. Infect Immun 1998; 66: 5008–19. [Google Scholar]
  16. Peres SY, Marches O, Daigle F, et al. A new cytolethal distending toxin (CDT) from Escherichia coli producing CNF2 blocks HeLa cell division in G2/M phase. Mol Microbiol 1997; 24: 1095–107. [Google Scholar]
  17. Pickett CL, Cottle DL, Pesci EC, Bikah G. Cloning, sequencing, and expression of the Escherichia coli cytolethal distending toxin genes. Infect Immun 1994; 62: 1046–51. [Google Scholar]
  18. Scott DA, Kaper JB. Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin. Infect Immun 1994; 62: 244–51. [Google Scholar]
  19. Lewis DA, Stevens MK, Latimer JL, et al. Characterization of Haemophilus ducreyi cdtA, cdtB, and cdtC mutants in in vitro and in vivo systems. Infect Immun 2001; 69: 5626–34. [Google Scholar]
  20. Lara-Tejero M, Galan JE. CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immun 2001; 69: 4358–65. [Google Scholar]
  21. Frisk A, Lebens M, Johansson C, et al. The role of different protein components from the Haemophilus ducreyi cytolethal distending toxin in the generation of cell toxicity. Microb Pathog 2001; 30: 313–24. [Google Scholar]
  22. Deng K, Latimer JL, Lewis DA, Hansen EJ. Investigation of the interaction among the components of the cytolethal distending toxin of Haemophilus ducreyi. Biochem Biophys Res Commun 2001; 285: 609–15. [Google Scholar]
  23. Lara-Tejero M, Galan JE. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 2000; 290: 354–7. [Google Scholar]
  24. Elwell CA, Dreyfus LA. DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol Microbiol 2000; 37: 952–63. [Google Scholar]
  25. Elwell C, Chao K, Patel K, Dreyfus L. Escherichia coli CdtB mediates cytolethal distending toxin cell cycle arrest. Infect Immun 2001; 69: 3418–22. [Google Scholar]
  26. Hassane DC, Lee RB, Mendenhall MD, Pickett CL. Cytolethal distending toxin demonstrates genotoxic activity in a yeast model. Infect Immun 2001; 69: 5752–9. [Google Scholar]
  27. Okuda J, Fukumoto M, Takeda Y, Nishibuchi M. Examination of diarrheagenicity of cytolethal distending toxin: suckling mouse response to the products of the cdtABC genes of Shigella dysenteriae. Infect Immun 1997; 65: 428–33. [Google Scholar]
  28. Purdy D, Buswell CM, Hodgson AE, McAlpine K, Henderson I, Leach SA. Characterisation of cytolethal distending toxin (CDT) mutants of Campylobacter jejuni. J Med Microbiol 2000; 49: 473–9. [Google Scholar]
  29. Stevens MK, Latimer JL, Lumbley SR, et al. Characterization of a Haemophilus ducreyi mutant deficient in expression of cytolethal distending toxin. Infect Immun 1999; 67: 3900–8. [Google Scholar]
  30. Young RS, Fortney KR, Gelfanova V, et al. Expression of cytolethal distending toxin and hemolysin is not required for pustule formation by Haemophilus ducreyi in human volunteers. Infect Immun 2001; 69: 1938–42. [Google Scholar]
  31. Barth H, Klingler M, Aktories K, Kinzel V. Clostridium botulinum C2 toxin delays entry into mitosis and activation of p34cdc2 kinase and cdc25- C phosphatase in HeLa cells. Infect Immun 1999; 67: 5083–90. [Google Scholar]
  32. Nougayrede JP, Marches O, Boury M, et al. The longterm cytoskeletal rearrangement induced by rabbit enteropathogenic Escherichia coli is Esp dependent but intimin independent. Mol Microbiol 1999; 31: 19–30. [Google Scholar]
  33. Demuth DR, Savary R, Golub E, Shenker BJ. Identification and analysis of fipA, a Fusobacterium nucleatum immunosuppressive factor gene. Infect Immun 1996; 64: 1335–41. [Google Scholar]
  34. Shenker BJ, Datar S. Fusobacterium nucleatum inhibits human T-cell activation by arresting cells in the mid-G1 phase of the cell cycle. Infect Immun 1995; 63: 4830–6. [Google Scholar]
  35. Yoshida J, Ishibashi T, Nishio M. Growth-inhibitory effect of a streptococcal antitumor glycoprotein on human epidermoid carcinoma A431 cells: involvement of dephosphorylation of epidermal growth factor receptor. Cancer Res 2001; 61: 6151–7. [Google Scholar]
  36. Gutkind JS. The pathways connecting G proteincoupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 1998; 273: 1839–42. [Google Scholar]
  37. Yoshida J, Takamura S, Nishio M. Characterization of a streptococcal antitumor glycoprotein (SAGP). Life Sci 1998; 62: 1043–53. [Google Scholar]
  38. Pitari GM, Di Guglielmo MD, Park J, Schulz S, Waldman SA. Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells. Proc Natl Acad Sci USA 2001; 98: 7846–51. [Google Scholar]
  39. Van Setten PA, van Hinsbergh VW, Van den Heuvel LP, et al. Verocytotoxin inhibits mitogenesis and protein synthesis in purified human glomerular mesangial cells without affecting cell viability: evidence for two distinct mechanisms. J Am Soc Nephrol 1997; 8: 1877–88. [Google Scholar]
  40. Klapproth JM, Scaletsky IC, McNamara BP, et al. A large toxin from pathogenic Escherichia coli strains that nhibits lymphocyte activation. Infect Immun 2000; 68: 2148–55. [Google Scholar]
  41. Matsui K, Nagano K, Arai T, Hirono I, Aoki T. DNA sequencing of the gene encoding Salmonella typhimurium-derived T-cell inhibitor (STI) and characterization of the gene product, cloned STI. FEMS Immunol Med Microbiol 1998; 22: 341–9. [Google Scholar]
  42. Knipp U, Birkholz S, Kaup W, Opferkuch W. Partial characterization of a cell proliferation-inhibiting protein produced by Helicobacter pylori. Infect Immun 1996; 64: 3491–6. [Google Scholar]
  43. Shenker BJ, Vitale L, Slots J. Immunosuppressive effects of Prevotella intermedia on in vitro human lymphocyte activation. Infect Immun 1991; 59: 4583–9. [Google Scholar]
  44. Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995; 11: 211–9. [Google Scholar]
  45. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science 1996; 274: 1664–72. [Google Scholar]
  46. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 2000; 408: 433–9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.