Free Access
Med Sci (Paris)
Volume 19, Number 11, Novembre 2003
Page(s) 1137 - 1145
Section M/S Revues
Published online 15 November 2003
  1. Fry CJ, Peterson CL. Chromatin remodeling enzymes: who’s on first ? Curr Biol 2001; 11: R185–97. [Google Scholar]
  2. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403: 41–5. [Google Scholar]
  3. Franklin SG, Zweidler A. Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature 1977; 266: 273–5. [Google Scholar]
  4. West MH, Bonner WM. Histone 2A, a heteromorphous family of eight protein species. Biochemistry 1980; 19: 3238–45. [Google Scholar]
  5. Chadwick BP, Willard HF. A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 2001; 152: 375–84. [Google Scholar]
  6. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997; 389: 251–60. [Google Scholar]
  7. Mannironi C, Bonner WM, Hatch CL. H2A.X. a histone isoprotein with a conserved C-terminal sequence, is encoded by a novel mRNA with both DNA replication type and polyA 3’ processing signals. Nucleic Acids Res 1989; 17: 9113–26. [Google Scholar]
  8. Pantazis P, Bonner WM. Quantitative determination of histone modification. H2A acetylation and phosphorylation. J Biol Chem 1981; 256: 4669–75. [Google Scholar]
  9. Lindner H, Wesierska- Gadek J, Helliger W, Puschendorf B, Sauermann G. Identification of ADPribosylated histones by the combined use of highperformance liquid chromatography and electrophoresis. J Chromatogr 1989; 472: 243–9. [Google Scholar]
  10. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273: 5858–68. [Google Scholar]
  11. Burma S, Chen BP, MurphyM, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 2001; 276: 42462–7. [Google Scholar]
  12. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA doublestrand breaks in vivo. J Cell Biol 1999; 146: 905–16. [Google Scholar]
  13. Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA doublestrand breaks. J Cell Biol 2000; 151: 1381–90. [Google Scholar]
  14. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 2000; 10: 886–95. [Google Scholar]
  15. Mahadevaiah SK, Turner JM, Baudat F, et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 2001; 27: 271–6. [Google Scholar]
  16. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 2000; 275: 9390–5. [Google Scholar]
  17. Chen HT, Bhandoola A, Difilippantonio MJ, et al. Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. Science 2000; 290: 1962–5. [Google Scholar]
  18. Petersen S, Casellas R, Reina-San-Martin B, et al. AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature 2001; 414: 660–5. [Google Scholar]
  19. Ward IM, Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 2001; 276: 47759–62. [Google Scholar]
  20. Hatch CL, Bonner WM, Moudrianakis EN. Minor histone 2A variants and ubiquinated forms in the native H2A:H2B dimer. Science 1983; 221: 468–70. [Google Scholar]
  21. Pehrson JR, Fried VA. MacroH2A, a core histone containing a large nonhistone region. Science 1992; 257: 1398–400. [Google Scholar]
  22. Kleinschmidt JA, Steinbeisser H. DNAdependent phosphorylation of histone H2A.X during nucleosome assembly in Xenopus laevis oocytes: involvement of protein phosphorylation in nucleosome spacing. EMBO J 1991; 10: 3043–50. [Google Scholar]
  23. Banerjee S, Smallwood A, Hulten M. ATP-dependent reorganization of human sperm nuclear chromatin. J Cell Sci 1995; 108: 755–65. [Google Scholar]
  24. Downs JA, Lowndes NF, Jackson SP. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 2000; 408: 1001–4. [Google Scholar]
  25. Carr AM, Dorrington SM, Hindley J, Phear GA, Aves SJ, Nurse P. Analysis of a histone H2A variant from fission yeast: evidence for a role in chromosome stability. Mol Gen Genet 1994; 245: 628–35. [Google Scholar]
  26. Spellman PT, Sherlock G, Zhang MQ, et al. Comprehensive identification of cell cycleregulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998; 9: 3273–97. [Google Scholar]
  27. White EM, Shapiro DL, Allis CD, Gorovsky MA. Sequence and properties of the message encoding Tetrahymena hv1, a highly evolutionarily conserved histone H2A variant that is associated with active genes. Nucleic Acids Res 1988; 16: 179–98. [Google Scholar]
  28. Hatch CL, Bonner WM. The human histone H2A.Z gene. Sequence and regulation. J Biol Chem 1990; 265: 15211–8. [Google Scholar]
  29. Jackson JD, Gorovsky MA. Histone H2A.Z has a conserved function that is distinct from that of the major H2A sequence variants. Nucleic Acids Res 2000; 28: 3811–6. [Google Scholar]
  30. Santisteban MS, Kalashnikova T, Smith MM. Histone H2A.Z regulates transcription and is partially redundant with nucleosome remodeling complexes. Cell 2000; 103: 411–22. [Google Scholar]
  31. Liu X, Bowen J, Gorovsky MA. Either of the major H2A genes but not an evolutionarily conserved H2A.F/Z variant of Tetrahymena thermophila can function as the sole H2A gene in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1996; 16: 2878–87. [Google Scholar]
  32. Clarkson MJ, Wells JR, Gibson F, Saint R, Tremethick DJ. Regions of variant histone His2AvD required for Drosophila development. Nature 1999; 399: 694–7. [Google Scholar]
  33. Faast R, Thonglairoam V, Schulz TC, et al. Histone variant H2A.Z is required for early mammalian development. Curr Biol 2001; 11: 1183–7. [Google Scholar]
  34. Suto RK, Clarkson MJ, Tremethick DJ, Luger K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat Struct Biol 2000; 7: 1121–4. [Google Scholar]
  35. Abbott DW, Ivanova VS, Wang X, Bonner WM, Ausio J. Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation. J Biol Chem 2001; 276: 41945–9. [Google Scholar]
  36. Stargell LA, Bowen J, Dadd CA, et al. Temporal and spatial association of histone H2A variant hv1 with transcriptionally competent chromatin during nuclear development in Tetrahymena thermophila. Genes Dev 1993; 7: 2641–51. [Google Scholar]
  37. Allis CD, Richman R, Gorovsky MA, et al. hv1 is an evolutionarily conserved H2A variant that is preferentially associated with active genes. J Biol Chem 1986; 261: 1941–8. [Google Scholar]
  38. Adam M, Robert F, Larochelle M, Gaudreau L. H2A.Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific conditions. Mol Cell Biol 2001; 21: 6270–9. [Google Scholar]
  39. Leach TJ, Mazzeo M, Chotkowski HL, Madigan JP, Wotring MG, Glaser RL. Histone H2A.Z is widely but nonrandomly distributed in chromosomes of Drosophila melanogaster. J Biol Chem 2000; 275: 23267–72. [Google Scholar]
  40. Dhillon N, Kamakaka RT. A histone variant, Htz1p, and a Sir1p-like protein, Esc2p, mediate silencing at HMR. Mol Cell 2000; 6: 769–80. [Google Scholar]
  41. Pehrson JR, Costanzi C, Dharia C. Developmental and tissue expression patterns of histone macroH2A1 subtypes. J Cell Biochem 1997; 65: 107–13. [Google Scholar]
  42. Costanzi C, Pehrson JR. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 1998; 393: 599–601. [Google Scholar]
  43. Heard E, Clerc P, Avner P. Xchromosome inactivation in mammals. Annu Rev Genet 1997; 31: 571–610. [Google Scholar]
  44. Cohen DE, Lee JT. Xchromosome inactivation and the search for chromosome-wide silencers. Curr Opin Genet Dev 2002; 12: 219–24. [Google Scholar]
  45. Clerc P. Tsix et Xist, antisens et sens: du verlan dans l’inactivation du chromosome X de la souris. Med Sci 2000; 16: 818–9. [Google Scholar]
  46. Blanche J. Encore l’inactivation du chromosome X chez la souris. Med Sci 1998; 14: 976. [Google Scholar]
  47. Mermoud JE, Costanzi C, Pehrson JR, Brockdorff N. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of Xinactivation. J Cell Biol 1999; 147: 1399–408. [Google Scholar]
  48. Rasmussen TP, Mastrangelo MA, Eden A, Pehrson JR, Jaenisch R. Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation. J Cell Biol 2000; 150: 1189–98. [Google Scholar]
  49. Csankovszki G, Panning B, Bates B, Pehrson JR, Jaenisch R. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 1999; 22: 323–4. [Google Scholar]
  50. Perche PY, Vourc’h C, Konecny L, et al. Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr Biol 2000; 10: 1531–4. [Google Scholar]
  51. Rogakou EP, Sekeri- Pataryas KE. Histone variants of H2A and H3 families are regulated during in vitro aging in the same manner as during differentiation. Exp Gerontol 1999; 34: 741–54. [Google Scholar]
  52. Wolffe A. Chromatin, structure and function, 3e éd. New York: Academic Press, 1992. [Google Scholar]
  53. Celeste A, Fernandez- Capetillo O, Kruhlak MJ, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 2003; 5: 675–9. [Google Scholar]
  54. Celeste A, Petersen S, Romanienko PJ, et al. Genomic instability in mice lacking histone H2AX. Science 2002; 296: 922–7. [Google Scholar]
  55. Meneghini MD, Wu M, Madhani HD. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 2003; 112: 725–36. [Google Scholar]
  56. Angelov D, Molla A, Perche PY, et al. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell 2003; 11: 1033–41. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.