Accès gratuit
Med Sci (Paris)
Volume 19, Numéro 11, Novembre 2003
Page(s) 1137 - 1145
Section M/S Revues
Publié en ligne 15 novembre 2003
  1. Fry CJ, Peterson CL. Chromatin remodeling enzymes: who’s on first ? Curr Biol 2001; 11: R185–97. [Google Scholar]
  2. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403: 41–5. [Google Scholar]
  3. Franklin SG, Zweidler A. Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature 1977; 266: 273–5. [Google Scholar]
  4. West MH, Bonner WM. Histone 2A, a heteromorphous family of eight protein species. Biochemistry 1980; 19: 3238–45. [Google Scholar]
  5. Chadwick BP, Willard HF. A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 2001; 152: 375–84. [Google Scholar]
  6. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997; 389: 251–60. [Google Scholar]
  7. Mannironi C, Bonner WM, Hatch CL. H2A.X. a histone isoprotein with a conserved C-terminal sequence, is encoded by a novel mRNA with both DNA replication type and polyA 3’ processing signals. Nucleic Acids Res 1989; 17: 9113–26. [Google Scholar]
  8. Pantazis P, Bonner WM. Quantitative determination of histone modification. H2A acetylation and phosphorylation. J Biol Chem 1981; 256: 4669–75. [Google Scholar]
  9. Lindner H, Wesierska- Gadek J, Helliger W, Puschendorf B, Sauermann G. Identification of ADPribosylated histones by the combined use of highperformance liquid chromatography and electrophoresis. J Chromatogr 1989; 472: 243–9. [Google Scholar]
  10. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273: 5858–68. [Google Scholar]
  11. Burma S, Chen BP, MurphyM, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 2001; 276: 42462–7. [Google Scholar]
  12. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA doublestrand breaks in vivo. J Cell Biol 1999; 146: 905–16. [Google Scholar]
  13. Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA doublestrand breaks. J Cell Biol 2000; 151: 1381–90. [Google Scholar]
  14. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 2000; 10: 886–95. [Google Scholar]
  15. Mahadevaiah SK, Turner JM, Baudat F, et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 2001; 27: 271–6. [Google Scholar]
  16. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 2000; 275: 9390–5. [Google Scholar]
  17. Chen HT, Bhandoola A, Difilippantonio MJ, et al. Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. Science 2000; 290: 1962–5. [Google Scholar]
  18. Petersen S, Casellas R, Reina-San-Martin B, et al. AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature 2001; 414: 660–5. [Google Scholar]
  19. Ward IM, Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 2001; 276: 47759–62. [Google Scholar]
  20. Hatch CL, Bonner WM, Moudrianakis EN. Minor histone 2A variants and ubiquinated forms in the native H2A:H2B dimer. Science 1983; 221: 468–70. [Google Scholar]
  21. Pehrson JR, Fried VA. MacroH2A, a core histone containing a large nonhistone region. Science 1992; 257: 1398–400. [Google Scholar]
  22. Kleinschmidt JA, Steinbeisser H. DNAdependent phosphorylation of histone H2A.X during nucleosome assembly in Xenopus laevis oocytes: involvement of protein phosphorylation in nucleosome spacing. EMBO J 1991; 10: 3043–50. [Google Scholar]
  23. Banerjee S, Smallwood A, Hulten M. ATP-dependent reorganization of human sperm nuclear chromatin. J Cell Sci 1995; 108: 755–65. [Google Scholar]
  24. Downs JA, Lowndes NF, Jackson SP. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 2000; 408: 1001–4. [Google Scholar]
  25. Carr AM, Dorrington SM, Hindley J, Phear GA, Aves SJ, Nurse P. Analysis of a histone H2A variant from fission yeast: evidence for a role in chromosome stability. Mol Gen Genet 1994; 245: 628–35. [Google Scholar]
  26. Spellman PT, Sherlock G, Zhang MQ, et al. Comprehensive identification of cell cycleregulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998; 9: 3273–97. [Google Scholar]
  27. White EM, Shapiro DL, Allis CD, Gorovsky MA. Sequence and properties of the message encoding Tetrahymena hv1, a highly evolutionarily conserved histone H2A variant that is associated with active genes. Nucleic Acids Res 1988; 16: 179–98. [Google Scholar]
  28. Hatch CL, Bonner WM. The human histone H2A.Z gene. Sequence and regulation. J Biol Chem 1990; 265: 15211–8. [Google Scholar]
  29. Jackson JD, Gorovsky MA. Histone H2A.Z has a conserved function that is distinct from that of the major H2A sequence variants. Nucleic Acids Res 2000; 28: 3811–6. [Google Scholar]
  30. Santisteban MS, Kalashnikova T, Smith MM. Histone H2A.Z regulates transcription and is partially redundant with nucleosome remodeling complexes. Cell 2000; 103: 411–22. [Google Scholar]
  31. Liu X, Bowen J, Gorovsky MA. Either of the major H2A genes but not an evolutionarily conserved H2A.F/Z variant of Tetrahymena thermophila can function as the sole H2A gene in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1996; 16: 2878–87. [Google Scholar]
  32. Clarkson MJ, Wells JR, Gibson F, Saint R, Tremethick DJ. Regions of variant histone His2AvD required for Drosophila development. Nature 1999; 399: 694–7. [Google Scholar]
  33. Faast R, Thonglairoam V, Schulz TC, et al. Histone variant H2A.Z is required for early mammalian development. Curr Biol 2001; 11: 1183–7. [Google Scholar]
  34. Suto RK, Clarkson MJ, Tremethick DJ, Luger K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat Struct Biol 2000; 7: 1121–4. [Google Scholar]
  35. Abbott DW, Ivanova VS, Wang X, Bonner WM, Ausio J. Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation. J Biol Chem 2001; 276: 41945–9. [Google Scholar]
  36. Stargell LA, Bowen J, Dadd CA, et al. Temporal and spatial association of histone H2A variant hv1 with transcriptionally competent chromatin during nuclear development in Tetrahymena thermophila. Genes Dev 1993; 7: 2641–51. [Google Scholar]
  37. Allis CD, Richman R, Gorovsky MA, et al. hv1 is an evolutionarily conserved H2A variant that is preferentially associated with active genes. J Biol Chem 1986; 261: 1941–8. [Google Scholar]
  38. Adam M, Robert F, Larochelle M, Gaudreau L. H2A.Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific conditions. Mol Cell Biol 2001; 21: 6270–9. [Google Scholar]
  39. Leach TJ, Mazzeo M, Chotkowski HL, Madigan JP, Wotring MG, Glaser RL. Histone H2A.Z is widely but nonrandomly distributed in chromosomes of Drosophila melanogaster. J Biol Chem 2000; 275: 23267–72. [Google Scholar]
  40. Dhillon N, Kamakaka RT. A histone variant, Htz1p, and a Sir1p-like protein, Esc2p, mediate silencing at HMR. Mol Cell 2000; 6: 769–80. [Google Scholar]
  41. Pehrson JR, Costanzi C, Dharia C. Developmental and tissue expression patterns of histone macroH2A1 subtypes. J Cell Biochem 1997; 65: 107–13. [Google Scholar]
  42. Costanzi C, Pehrson JR. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 1998; 393: 599–601. [Google Scholar]
  43. Heard E, Clerc P, Avner P. Xchromosome inactivation in mammals. Annu Rev Genet 1997; 31: 571–610. [Google Scholar]
  44. Cohen DE, Lee JT. Xchromosome inactivation and the search for chromosome-wide silencers. Curr Opin Genet Dev 2002; 12: 219–24. [Google Scholar]
  45. Clerc P. Tsix et Xist, antisens et sens: du verlan dans l’inactivation du chromosome X de la souris. Med Sci 2000; 16: 818–9. [Google Scholar]
  46. Blanche J. Encore l’inactivation du chromosome X chez la souris. Med Sci 1998; 14: 976. [Google Scholar]
  47. Mermoud JE, Costanzi C, Pehrson JR, Brockdorff N. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of Xinactivation. J Cell Biol 1999; 147: 1399–408. [Google Scholar]
  48. Rasmussen TP, Mastrangelo MA, Eden A, Pehrson JR, Jaenisch R. Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation. J Cell Biol 2000; 150: 1189–98. [Google Scholar]
  49. Csankovszki G, Panning B, Bates B, Pehrson JR, Jaenisch R. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 1999; 22: 323–4. [Google Scholar]
  50. Perche PY, Vourc’h C, Konecny L, et al. Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr Biol 2000; 10: 1531–4. [Google Scholar]
  51. Rogakou EP, Sekeri- Pataryas KE. Histone variants of H2A and H3 families are regulated during in vitro aging in the same manner as during differentiation. Exp Gerontol 1999; 34: 741–54. [Google Scholar]
  52. Wolffe A. Chromatin, structure and function, 3e éd. New York: Academic Press, 1992. [Google Scholar]
  53. Celeste A, Fernandez- Capetillo O, Kruhlak MJ, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 2003; 5: 675–9. [Google Scholar]
  54. Celeste A, Petersen S, Romanienko PJ, et al. Genomic instability in mice lacking histone H2AX. Science 2002; 296: 922–7. [Google Scholar]
  55. Meneghini MD, Wu M, Madhani HD. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 2003; 112: 725–36. [Google Scholar]
  56. Angelov D, Molla A, Perche PY, et al. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell 2003; 11: 1033–41. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.