Accès gratuit
Numéro
Med Sci (Paris)
Volume 19, Numéro 4, Avril 2003
Page(s) 459 - 464
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2003194459
Publié en ligne 15 avril 2003
  1. Richoux-Duranthon V. Information maternelle et développement embryonnaire chez la souris. Med Sci 1991; 7: 1078–82. [Google Scholar]
  2. Sturtevant A. Inheritance of direction of coling in Limnea. Science 1923; 58: 269–70. [Google Scholar]
  3. Schupbach T, Wieschaus E. Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. Genetics 1989; 121: 101–17. [Google Scholar]
  4. Mohier E. Déterminisme de la polarite dorso-ventrale de l’embryon de drosophile. Med Sci 1992; 8: 654–63. [Google Scholar]
  5. Loppin B, Docquier M, Bonneton F, Couble P. The maternal effect mutation sesame affects the formation of the male pronucleus in Drosophila melanogaster. Dev Biol 2000; 222: 392–404. [Google Scholar]
  6. Golden A, Sadler PL, Wallenfang MR, et al. Metaphase to anaphase (mat) transition-defective mutants in Caenorhabditis elegans. J Cell Biol 2000; 151: 1469–82. [Google Scholar]
  7. Humphrey RR. A recessive factor (o, for ova deficient) determining a complex of abnormalities in the Mexican axolotl (Ambystoma mexicanum). Dev Biol 1966; 13: 57–76. [Google Scholar]
  8. Pelegri F, Knaut H, Maischein HM, Schulte- Merker S, Nusslein-Volhard C. A mutation in the zebrafish maternal-effect gene nebel affects furrow formation and vasa RNA localization. Curr Biol 1999; 9: 1431–40. [Google Scholar]
  9. Kubota HY, Itoh K, Asada- Kubota M. Cytological and biochemical analyses of the maternal-effect mutant embryos with abnormal cleavage furrow formation in Xenopus laevis. Dev Biol 1991; 144: 145–51. [Google Scholar]
  10. Stancheva I, Hensey C, Meehan RR. Loss of the maintenance methyltransferase, xDnmt1, induces apoptosis in Xenopus embryos. EMBO J 2001; 20: 1963–73. [Google Scholar]
  11. Paldi J, Jami J. Éléments chromosomiques contrôlant l’empreinte parentale des gènes. Med Sci 1996; 12: 189–91. [Google Scholar]
  12. Howell CY, Bestor TH, Ding F, et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 2001; 104: 829–38. [Google Scholar]
  13. Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science 2001; 294: 2536–9. [Google Scholar]
  14. Pirkkala L, Nykanen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 2001; 15: 1118–31. [Google Scholar]
  15. Christians E, Davis AA, Thomas SD, Benjamin IJ. Maternal effect of Hsf1 on reproductive success. Nature 2000; 407: 693–4. [Google Scholar]
  16. Yan LJ, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ. Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 2002; 21: 5164–72. [Google Scholar]
  17. Tong ZB, Gold L, Pfeifer KE, et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet 2000; 26: 267–8. [Google Scholar]
  18. Tong ZB, Nelson LM, Dean J. Mater encodes a maternal protein in mice with a leucine-rich repeat domain homologous to porcine ribonuclease inhibitor. Mamm Genome 2000; 11: 281–7. [Google Scholar]
  19. Rankin TL, O’Brien M, Lee E, Wigglesworth K, Eppig J, Dean J. Defective zonae pellucidae in Zp2-null mice disrupt folliculogenesis, fertility and development. Development 2001; 128: 1119–26. [Google Scholar]
  20. Zhao WD, Ishikawa A, Yamagata T, Bolor H, Wakasugi N. Female mice of DDK strain are fully fertile in the intersubspecific crosses with Mus musculus molossinus and M. m. castaneus. Mamm Genome 2002; 13: 345–51. [Google Scholar]
  21. Pardo-Manuel de Villena F, Naumova AK, Verner AE, Jin WH, Sapienza C. Confirmation of maternal transmission ratio distortion at Om and direct evidence that the maternal and paternal DDK syndrome genes are linked. Mamm Genome 1997; 8: 642–6. [Google Scholar]
  22. Renard JP, Baldacci P, Richoux-Duranthon V, Pournin S, Babinet C. A maternal factor affecting mouse blastocyst formation. Development 1994; 120: 797–802. [Google Scholar]
  23. Winking H, Silver LM. Characterization of a recombinant mouse T haplotype that expresses a dominant lethal maternal effect. Genetics 1984; 108: 1013–20. [Google Scholar]
  24. Wutz A, Theussl HC, Dausman J, Jaenisch R, Barlow DP, Wagner EF. Nonimprinted Igf2r expression decreases growth and rescues the Tme mutation in mice. Development 2001; 128: 1881–7. [Google Scholar]
  25. Duranthon V, Renard JP. The developmental competence of mammalian oocytes: a convenient but biologically fuzzy concept. Theriogenology 2001; 55: 1277–89. [Google Scholar]
  26. Brown SD, Balling R. Systematic approaches to mouse mutagenesis. Curr Opin Genet Dev 2001; 11: 268–73. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.