Free Access
Med Sci (Paris)
Volume 19, Number 4, Avril 2003
Page(s) 465 - 471
Section M/S Revues
Published online 15 April 2003
  1. Brockes JP. Amphibian limb regeneration: rebuilding a complex structure. Science 1997; 276: 81–7. [Google Scholar]
  2. Velloso CP, Kumar A, Tanaka EM, Brockes JP. Generation of mononucleate cells from post-mitotic myotubes proceeds in the absence of cell cycle progression. Differentiation 2000; 66: 239–46. [Google Scholar]
  3. Dinsmore CE. Urodele limb and tail regeneration in early biological thought: an essay on scientific controversy and social change. Int J Dev Biol 1996; 40: 621–7. [Google Scholar]
  4. Alvarado AS. Regeneration in the metazoans: why does it happen ? BioEssays 2000; 22: 578–90. [Google Scholar]
  5. Goss RJ. The evolution of regeneration: adaptative or inherent ? J Theor Biol 1992; 159: 241–60. [Google Scholar]
  6. Brockes JP, Kumar A, Velloso CP. Regeneration as an evolutionary variable. J Anat 2001; 199: 3–11. [Google Scholar]
  7. Muneoka K, Holler- Dinsmore G, Bryant SV. Intrinsic control of regenerative loss in Xenopus laevis limbs. J Exp Zool 1986; 240: 47–54. [Google Scholar]
  8. Wanek N, Muneoka K, Bryant SV. Evidence for regulation following amputation and tissue grafting In the developing mouse limb. J Exp Zool 1989; 249: 55–61. [Google Scholar]
  9. Chan WY, Lee KK, Tam PP. Regenerative capacity of forelimb buds after amputation in mouse embryos at the earlyorganogenesis stage. J Exp Zool 1991; 260: 74–83. [Google Scholar]
  10. Taylor GP, Anderson R, Reginelli AD, Muneoka K. FGF-2 Induces regeneration of the chick limb bud. Dev Biol 1994; 163: 282–4. [Google Scholar]
  11. Kostakopoulou K, Vogel A, Brickell P, Tickle C. Regeneration of wing bud stumps of chick embryos and reactivation of Msx-1 and Shh expression in response to FGF-4 and ridge signals. Mech Dev 1996; 55: 119–31. [Google Scholar]
  12. Borgens RB. Mice regrow the tips of their foretoes. Science 1982; 217: 747–50. [Google Scholar]
  13. Reginelli AD, Wang Y, Sassoon D, Muneoka K. Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development 1995; 121: 1065–76. [Google Scholar]
  14. Zhao W, Neufeld DA. Bone regrowth in mice stimulated by nail organ. J Exp Zool 1995; 172: 1–10. [Google Scholar]
  15. Illingsworth CM. Trapped fingers and amputated fingers tips in children. J Pediatr Surg 1974; 9: 853–8. [Google Scholar]
  16. Mohammad KS, Day FA, Neufeld DA. Bone growth is induced by nail transplantation in amputated proximal phalanges. Calcif Tissue Int 1999; 65: 408–10. [Google Scholar]
  17. McGann CJ, Odelberg SJ, Keating MT. Mammalian myotube dedifferenciation induced by newt regeneration extract. Proc Natl Acad Sci USA 2001; 98: 13699–704. [Google Scholar]
  18. Poss KD, Shen J, Nechiporuk A, et al. Roles for FGF signaling during zebrafish fin regeneration. Dev Biol 2000; 222: 347–58. [Google Scholar]
  19. Géraudie J, Ferretti P. Cellular and molecular basis of regeneration. From invertebrates to humans. New York: John Wiley and Sons, 1998 : 458 p. [Google Scholar]
  20. Poelo G, Brown CW, Laforest L, Akimenko MA. Cell proliferation and movement during early fin regeneration in zebrafish. Dev Dyn 2001; 221: 380–90. [Google Scholar]
  21. Santos-Ruiz L, Santamaria JA, Ruiz-Sanchez J, Becerra J. Cell proliferation during blastema formation in the regenerating teleost fin. Dev Dyn 2002; 223: 262–72. [Google Scholar]
  22. Tawk M, Tuil D, Torrente Y, Vriz S, Paulin D. Highefficiency gene transfer into adult fish: a new tool to study fin regeneration. Genesis 2002; 32: 27–31. [Google Scholar]
  23. Chalkey DT. A quantitative hystological analysis of forelimb regeneration in Triturus viridescens. J Morphol 1954; 94: 21–70. [Google Scholar]
  24. Cameron JA, Hilgers AR, Hinterberger TJ. Evidence that reserve cells are a source of regenerated adult newt muscle in vitro. Nature 1986; 321: 607–10. [Google Scholar]
  25. Stocum DL. Limb regeneration: re-entering the cell cycle. Curr Biol 1999; 9: R644–6. [Google Scholar]
  26. Ferretti P, Brockes JP. Cell origin and identity in limb regeneration and development. Glia 1991; 4: 214–24. [Google Scholar]
  27. Schotté OE, Wiber JF. Effects of adrenal transplants upon forelimb regeneration in normal and in hypophysectomized adult frogs. J Embriol Exp Morphol 1958; 6: 247–69. [Google Scholar]
  28. Géraudie J, Ferretti P. Gene expression during amphibian limb regeneration. Int Rev Cytol 1998; 180: 1–50. [Google Scholar]
  29. Gardiner DM, Bryant SV. Molecular mechanisms in the control of limb regeneration: the role of homeobox genes. Int J Dev Biol 1996; 40: 797–805. [Google Scholar]
  30. Carlson MRJ, Komine Y, Bryant SV, Gardiner DM. Expression of Hoxb13 and Hoxc10 in developping and regenerating Axolotl limbs and tails. Dev Biol 2001; 229: 396–406. [Google Scholar]
  31. Brockes JP. Mitogenic growth factors and nerve dependence of limb regeneration. Science 1984; 225: 1280- 7. [Google Scholar]
  32. Brockes JP. The nerve dependance of amphibian limb regeneration. J Exp Biol 1987; 132: 79–91. [Google Scholar]
  33. Singer M. Neurotrophic control of limb regeneration in the newt. Ann NY Acad Sci 1974; 228: 308–22. [Google Scholar]
  34. Géraudie J, Singer M. Relation between nerve fiber number and pectoral fin regeneration in teleost. J Exp Zool 1977; 199: 1–8. [Google Scholar]
  35. Brockes JP, Kintner CR. Glial growth factor and nervedependent proliferation in the regeneration blastema of Urodele amphibians. Cell 1986; 45: 301–6. [Google Scholar]
  36. Wang, L, Marchionni MA, Tassava RA. Cloning and neuronal expression of a type III newt neuregulin and rescue of denervated, nerve-dependent newt limb blastemas by rhGGF2. J Neurobiol 2000; 43: 150–8. [Google Scholar]
  37. Munaim SI, Mescher AL. Transferrin and the trophic effect of neural tissue on amphibian limb regeneration blastemas. Dev Biol 1986; 116: 138–42. [Google Scholar]
  38. Guyénot E, Ponse A. Territoires de régénération et transplantation. Bull Biol Fr Belg 1930; 64: 251–87. [Google Scholar]
  39. Simpson S. Induction of limb regeneration in the lizard, lygosoma laterale, by augmentation of the nerve supply. Proc Soc Exp Biol Med 1961; 107: 108–11. [Google Scholar]
  40. Bryant SV, Wozny KJ. Stimulation of limb regeneration in the lizard Xantusia vigilis by means of ependymal implants. J Exp Zool 1974; 189: 339–52. [Google Scholar]
  41. Singer M. Induction of regeneration of the forelimb of the postmetamorphosis frog by augmentation of the nerve supply. J Exp Zool 1954; 126: 419–71. [Google Scholar]
  42. Mizell M. Limb regeneration: induction in the newborn opossum. Science 1968; 161: 283–6. [Google Scholar]
  43. Yntema CL. Regeneration in sparsely innervated and aneurogenic forelimbs of Amblystoma larvae. J Exp Zool 1959; 140: 101–23; 1959; 142: 423–439. [Google Scholar]
  44. Thornton CS, Thornton MT. Recuperation of regeneration in denervated limbs of Ambystoma larvae. J Exp Zool 1970; 173: 293–302. [Google Scholar]
  45. Fishman M. Zebrafish: the canonical vertebrate. Science 2001; 294: 1290–1. [Google Scholar]
  46. Nasevicius A, Ekker SC. Effective targeted gene knockdown in zebrafish. Nat Genet 2000; 26: 216–20. [Google Scholar]
  47. Ando H, Furuta T, Tsien RY, Okamoto H. Photomediated gene activation using caged RNA/DNA in zebrafish embryos. Nat Genet 2001; 28: 317–25. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.