Accès gratuit
Numéro
Med Sci (Paris)
Volume 19, Numéro 4, Avril 2003
Page(s) 465 - 471
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2003194465
Publié en ligne 15 avril 2003
  1. Brockes JP. Amphibian limb regeneration: rebuilding a complex structure. Science 1997; 276: 81–7. [Google Scholar]
  2. Velloso CP, Kumar A, Tanaka EM, Brockes JP. Generation of mononucleate cells from post-mitotic myotubes proceeds in the absence of cell cycle progression. Differentiation 2000; 66: 239–46. [Google Scholar]
  3. Dinsmore CE. Urodele limb and tail regeneration in early biological thought: an essay on scientific controversy and social change. Int J Dev Biol 1996; 40: 621–7. [Google Scholar]
  4. Alvarado AS. Regeneration in the metazoans: why does it happen ? BioEssays 2000; 22: 578–90. [Google Scholar]
  5. Goss RJ. The evolution of regeneration: adaptative or inherent ? J Theor Biol 1992; 159: 241–60. [Google Scholar]
  6. Brockes JP, Kumar A, Velloso CP. Regeneration as an evolutionary variable. J Anat 2001; 199: 3–11. [Google Scholar]
  7. Muneoka K, Holler- Dinsmore G, Bryant SV. Intrinsic control of regenerative loss in Xenopus laevis limbs. J Exp Zool 1986; 240: 47–54. [Google Scholar]
  8. Wanek N, Muneoka K, Bryant SV. Evidence for regulation following amputation and tissue grafting In the developing mouse limb. J Exp Zool 1989; 249: 55–61. [Google Scholar]
  9. Chan WY, Lee KK, Tam PP. Regenerative capacity of forelimb buds after amputation in mouse embryos at the earlyorganogenesis stage. J Exp Zool 1991; 260: 74–83. [Google Scholar]
  10. Taylor GP, Anderson R, Reginelli AD, Muneoka K. FGF-2 Induces regeneration of the chick limb bud. Dev Biol 1994; 163: 282–4. [Google Scholar]
  11. Kostakopoulou K, Vogel A, Brickell P, Tickle C. Regeneration of wing bud stumps of chick embryos and reactivation of Msx-1 and Shh expression in response to FGF-4 and ridge signals. Mech Dev 1996; 55: 119–31. [Google Scholar]
  12. Borgens RB. Mice regrow the tips of their foretoes. Science 1982; 217: 747–50. [Google Scholar]
  13. Reginelli AD, Wang Y, Sassoon D, Muneoka K. Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development 1995; 121: 1065–76. [Google Scholar]
  14. Zhao W, Neufeld DA. Bone regrowth in mice stimulated by nail organ. J Exp Zool 1995; 172: 1–10. [Google Scholar]
  15. Illingsworth CM. Trapped fingers and amputated fingers tips in children. J Pediatr Surg 1974; 9: 853–8. [Google Scholar]
  16. Mohammad KS, Day FA, Neufeld DA. Bone growth is induced by nail transplantation in amputated proximal phalanges. Calcif Tissue Int 1999; 65: 408–10. [Google Scholar]
  17. McGann CJ, Odelberg SJ, Keating MT. Mammalian myotube dedifferenciation induced by newt regeneration extract. Proc Natl Acad Sci USA 2001; 98: 13699–704. [Google Scholar]
  18. Poss KD, Shen J, Nechiporuk A, et al. Roles for FGF signaling during zebrafish fin regeneration. Dev Biol 2000; 222: 347–58. [Google Scholar]
  19. Géraudie J, Ferretti P. Cellular and molecular basis of regeneration. From invertebrates to humans. New York: John Wiley and Sons, 1998 : 458 p. [Google Scholar]
  20. Poelo G, Brown CW, Laforest L, Akimenko MA. Cell proliferation and movement during early fin regeneration in zebrafish. Dev Dyn 2001; 221: 380–90. [Google Scholar]
  21. Santos-Ruiz L, Santamaria JA, Ruiz-Sanchez J, Becerra J. Cell proliferation during blastema formation in the regenerating teleost fin. Dev Dyn 2002; 223: 262–72. [Google Scholar]
  22. Tawk M, Tuil D, Torrente Y, Vriz S, Paulin D. Highefficiency gene transfer into adult fish: a new tool to study fin regeneration. Genesis 2002; 32: 27–31. [Google Scholar]
  23. Chalkey DT. A quantitative hystological analysis of forelimb regeneration in Triturus viridescens. J Morphol 1954; 94: 21–70. [Google Scholar]
  24. Cameron JA, Hilgers AR, Hinterberger TJ. Evidence that reserve cells are a source of regenerated adult newt muscle in vitro. Nature 1986; 321: 607–10. [Google Scholar]
  25. Stocum DL. Limb regeneration: re-entering the cell cycle. Curr Biol 1999; 9: R644–6. [Google Scholar]
  26. Ferretti P, Brockes JP. Cell origin and identity in limb regeneration and development. Glia 1991; 4: 214–24. [Google Scholar]
  27. Schotté OE, Wiber JF. Effects of adrenal transplants upon forelimb regeneration in normal and in hypophysectomized adult frogs. J Embriol Exp Morphol 1958; 6: 247–69. [Google Scholar]
  28. Géraudie J, Ferretti P. Gene expression during amphibian limb regeneration. Int Rev Cytol 1998; 180: 1–50. [Google Scholar]
  29. Gardiner DM, Bryant SV. Molecular mechanisms in the control of limb regeneration: the role of homeobox genes. Int J Dev Biol 1996; 40: 797–805. [Google Scholar]
  30. Carlson MRJ, Komine Y, Bryant SV, Gardiner DM. Expression of Hoxb13 and Hoxc10 in developping and regenerating Axolotl limbs and tails. Dev Biol 2001; 229: 396–406. [Google Scholar]
  31. Brockes JP. Mitogenic growth factors and nerve dependence of limb regeneration. Science 1984; 225: 1280- 7. [Google Scholar]
  32. Brockes JP. The nerve dependance of amphibian limb regeneration. J Exp Biol 1987; 132: 79–91. [Google Scholar]
  33. Singer M. Neurotrophic control of limb regeneration in the newt. Ann NY Acad Sci 1974; 228: 308–22. [Google Scholar]
  34. Géraudie J, Singer M. Relation between nerve fiber number and pectoral fin regeneration in teleost. J Exp Zool 1977; 199: 1–8. [Google Scholar]
  35. Brockes JP, Kintner CR. Glial growth factor and nervedependent proliferation in the regeneration blastema of Urodele amphibians. Cell 1986; 45: 301–6. [Google Scholar]
  36. Wang, L, Marchionni MA, Tassava RA. Cloning and neuronal expression of a type III newt neuregulin and rescue of denervated, nerve-dependent newt limb blastemas by rhGGF2. J Neurobiol 2000; 43: 150–8. [Google Scholar]
  37. Munaim SI, Mescher AL. Transferrin and the trophic effect of neural tissue on amphibian limb regeneration blastemas. Dev Biol 1986; 116: 138–42. [Google Scholar]
  38. Guyénot E, Ponse A. Territoires de régénération et transplantation. Bull Biol Fr Belg 1930; 64: 251–87. [Google Scholar]
  39. Simpson S. Induction of limb regeneration in the lizard, lygosoma laterale, by augmentation of the nerve supply. Proc Soc Exp Biol Med 1961; 107: 108–11. [Google Scholar]
  40. Bryant SV, Wozny KJ. Stimulation of limb regeneration in the lizard Xantusia vigilis by means of ependymal implants. J Exp Zool 1974; 189: 339–52. [Google Scholar]
  41. Singer M. Induction of regeneration of the forelimb of the postmetamorphosis frog by augmentation of the nerve supply. J Exp Zool 1954; 126: 419–71. [Google Scholar]
  42. Mizell M. Limb regeneration: induction in the newborn opossum. Science 1968; 161: 283–6. [Google Scholar]
  43. Yntema CL. Regeneration in sparsely innervated and aneurogenic forelimbs of Amblystoma larvae. J Exp Zool 1959; 140: 101–23; 1959; 142: 423–439. [Google Scholar]
  44. Thornton CS, Thornton MT. Recuperation of regeneration in denervated limbs of Ambystoma larvae. J Exp Zool 1970; 173: 293–302. [Google Scholar]
  45. Fishman M. Zebrafish: the canonical vertebrate. Science 2001; 294: 1290–1. [Google Scholar]
  46. Nasevicius A, Ekker SC. Effective targeted gene knockdown in zebrafish. Nat Genet 2000; 26: 216–20. [Google Scholar]
  47. Ando H, Furuta T, Tsien RY, Okamoto H. Photomediated gene activation using caged RNA/DNA in zebrafish embryos. Nat Genet 2001; 28: 317–25. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.