Accès gratuit
Med Sci (Paris)
Volume 19, Numéro 4, Avril 2003
Page(s) 429 - 436
Section M/S Revues
Publié en ligne 15 avril 2003
  1. Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation. Science 1999; 285: 221–7. [Google Scholar]
  2. Delon J, Stoll S, Germain RN. Imaging of T-cell interactions with antigen presenting cells in culture and in intact lymphoid tissue. Immunol Rev 2002; 189: 51–63. [Google Scholar]
  3. Dustin ML, Cooper JA. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 2000; 1:23–9. [Google Scholar]
  4. Van der Merwe AP, Davis SJ, Shaw AS, Dustin ML. Cytoskeletal polarization and redistribution of cellsurface molecules during T cell antigen recognition. Semin Immunol 2000; 12:5–21. [Google Scholar]
  5. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 1998; 395: 82–6. [Google Scholar]
  6. Freiberg BA, Kupfer H, Maslanik W, et al. Staging and resetting T cell activation in SMACs. Nat Immunol 2002; 3: 911–7. [Google Scholar]
  7. Monks CR, Kupfer H, Tamir I, Barlow A, Kupfer A. Selective modulation of protein kinase C-θ during T-cell activation. Nature 1997; 385: 83–6. [Google Scholar]
  8. Sun Z, Arendt CW, Ellmeier W, et al. PKC-θ is required for TCR-induced NF-кB activation in mature but not immature T lymphocytes. Nature 2000; 404: 402–7. [Google Scholar]
  9. Revy P, Sospedra M, Barbour B, Trautmann A. Functional antigen-independent synapses formed between T cells and dendritic cells. Nat Immunol 2001; 2: 925–31. [Google Scholar]
  10. Allenspach EJ, Cullinan P, Tong J, et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 2001; 15: 739–50. [Google Scholar]
  11. Krummel MF, Sjaastad MD, Wulfing C, Davis MM. Differential clustering of CD4 and CD3ξ during T cell recognition. Science 2000; 289: 1349–52. [Google Scholar]
  12. Wulfing C, Sjaastad MD, Davis MM. Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc Natl Acad Sci USA 1998; 95: 6302–7. [Google Scholar]
  13. Richie LI, Ebert PJR, Wu LC, Krummel MF, Owen JJT, Davis M. Imaging synapse formation during thymocyte selection: inability of CD3ζ to form a stable central accumulation during negative selection. Immunity 2002; 16: 595–606. [Google Scholar]
  14. Wulfing C, Bauch A, Crabtree GR, Davis MM. The vav exchange factor is an essential regulator in actindependent receptor translocation to the lymphocyte-antigenpresenting cell interface. Proc Natl Acad Sci USA 2000; 97: 10150–5. [Google Scholar]
  15. Kupiec JJ, Sonigo P. Ni Dieu ni gène. Paris: Seuil, 2000. [Google Scholar]
  16. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392: 245–52. [Google Scholar]
  17. Delon J, Bercovici N, Raposo G, Liblau R, Trautmann A. Antigen-dependent and - independent Ca2+ responses triggered in T cells by dendritic cells compared with B cells. J Exp Med 1998; 188: 1473–84. [Google Scholar]
  18. Montes M, McIlroy D, Hosmalin A, Trautmann A. Calcium responses elicited in human T cells and dendritic cells by cell-cell interaction and soluble ligands. Int Immunol 1999; 11: 561–8. [Google Scholar]
  19. Inaba K, Romani N, Steinman RM. An antigenindependent contact mechanism as an early step in T cell-proliferative responses to dendritic cells. J Exp Med 1989; 170: 527–42. [Google Scholar]
  20. Bousso P, Bhakta NR, Lewis RS, Robey E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 2002; 296: 1876–80. [Google Scholar]
  21. Miller MJ, Wei SH, Parker I, Cahalan MD. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 2002; 296: 1869–73. [Google Scholar]
  22. Lee KH, Holdorf AD, Dustin ML, Chan AC, Allen PM, Shaw AS. T cell receptor signaling precedes immunological synapse formation. Science 2002; 295: 1539–42. [Google Scholar]
  23. Stefanova II, Dorfman JR, Germain RN. Selfrecognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 2002; 420: 429–34. [Google Scholar]
  24. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM. Direct observation of ligand recognition by T cells. Nature 2002; 419: 845–9. [Google Scholar]
  25. Costello PS, Gallagher M, Cantrell DA. Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. Nat Immunol 2002; 3: 1082–9. [Google Scholar]
  26. Harriague J, Bismuth G. Imaging antigen-induced PI3K activation in T cells. Nat Immunol 2002; 3: 1090–6. [Google Scholar]
  27. Stinchcombe JC, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 2001; 15: 751–61. [Google Scholar]
  28. Kupfer H, Monks CR, Kupfer A. Small splenic B cells that bind to antigen-specific T helper (Th) cells and face the site of cytokine production in the Th cells selectively proliferate: immunofluorescence microscopic studies of Th-B antigen-presenting cell interactions. J Exp Med 1994; 179: 1507–15. [Google Scholar]
  29. Suzuki SC, Inoue T, Kimura Y, Tanaka T, Takeichi M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol Cell Neurosci 1997; 9: 433–47. [Google Scholar]
  30. Missler M, Sudhof TC. Neurexins: three genes and 1001 products. Trends Genet 1998; 14:20–6. [Google Scholar]
  31. Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ. Functional requirement for class I MHC in CNS development and plasticity. Science 2000; 290: 2155–9. [Google Scholar]
  32. Reichert P, Reinhardt RL, Ingulli E, Jenkins MK. Cutting edge: in vivo identification of TCR redistribution and polarized IL-2 production by naive CD4 T cells. J Immunol 2001; 166: 4278–81. [Google Scholar]
  33. Arrieumerlou C, Donnadieu E, Keryer G, et al. Involvement of phosphoinositide 3-kinase and rac in membrane ruffling induced by IL-2 in T cells Eur J Immunol 1998; 28: 1877–85. [Google Scholar]
  34. Donnadieu E, Bismuth G, Trautmann A. The intracellular Ca2+ concentration optimal for T cell activation is quite different after ionomycin or CD3 stimulation. Eur J Physiol (Pflug Arch) 1995; 429: 546–54. [Google Scholar]
  35. Feng G, Tintrup H, Kirsch J, et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 1998; 282: 1321–4. [Google Scholar]
  36. Meier J, Meunier-Durmort C, Forest C, Triller A, Vannier C. Formation of glycine receptor clusters and their accumulation at synapses. J Cell Sci 2000; 113: 2783–95. [Google Scholar]
  37. Apel ED, Roberds SL, Campbell KP, Merlie JP. Rapsyn may function as a link between the acetylcholine receptor and the agrin-binding dystrophin-associated glycoprotein complex. Neuron 1995; 15: 115–26. [Google Scholar]
  38. Rao A, Craig AM. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 1997; 19: 801–12. [Google Scholar]
  39. Dustin ML, Olszowy MW, Holdorf AD, et al. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in Tcell contacts. Cell 1998; 94: 667–77. [Google Scholar]
  40. Griffiths EK, Krawczyk C, Kong YY, et al. Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap. Science 2001; 293: 2260–3. [Google Scholar]
  41. Peterson EJ, Woods ML, Dmowski SA, et al. Coupling of the TCR to integrin activation by Slap-130/Fyb. Science 2001; 293: 2263–5. [Google Scholar]
  42. Hanada T, Lin L, Tibaldi EV, Reinherz EL, Chishti AH. GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J Biol Chem 2000; 275: 28774–84. [Google Scholar]
  43. Itoh K, Sakakibara M, Yamasaki S, et al. Cutting edge: negative regulation of immune synapse formation by anchoring lipid raft to cytoskeleton through Cbp- EBP50-ERM assembly. J Immunol 2002; 168: 541–4. [Google Scholar]
  44. Fischer M, Kaech S, Knutti D, Matus A. Rapid actin-based plasticity in dendritic spines. Neuron 1998; 20: 847- 54. [Google Scholar]
  45. Hall ZW, Sanes JR. Synaptic structure and development: the neuromuscular junction. Cell 1993; 72 (suppl) : 99–121. [Google Scholar]
  46. Engert F, Bonhoeffer T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 1999; 399: 66–70. [Google Scholar]
  47. Koh YH, Popova E, Thomas U, Griffith LC, Budnik V. Regulation of DLG localization at synapses by CaMKII-dependent phosphorylation. Cell 1999; 98: 353–63. [Google Scholar]
  48. Matus A. Actin-based plasticity in dendritic spines. Science 2000; 290: 754–8. [Google Scholar]
  49. Al-Alwan MM, Rowden G, Lee TD, West KA. Cutting edge: the dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J Immunol 2001; 166: 1452–6. [Google Scholar]
  50. Boes M, Cerny J, Massol R, et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 2002; 418: 983–8. [Google Scholar]
  51. Gee SH, Montanaro F, Lindenbaum MH, Carbonetto S. Dystroglycan-α, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 1994; 77: 675–86. [Google Scholar]
  52. Glass DJ, Bowen DC, Stitt TN, et al. Agrin acts via a MuSK receptor complex. Cell 1996; 85: 513–23. [Google Scholar]
  53. Khan AA, Bose C, Yam LS, Soloski MJ, Rupp F. Physiological regulation of the immunological synapse by agrin. Science 2001; 292: 1681–6. [Google Scholar]
  54. Migaud M, Charlesworth P, Dempster M, et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 1998; 396: 433–9. [Google Scholar]
  55. Delon J, Kaibuchi K, Germain RN. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity 2001; 15: 691–701. [Google Scholar]
  56. Roumier A, Olivo-Marin JC, Arpin M, et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 2001; 15: 715–28. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.