Free Access
Issue
Med Sci (Paris)
Volume 18, Number 3, Mars 2002
Page(s) 274 - 276
Section Le Magazine : Nouvelles
DOI https://doi.org/10.1051/medsci/2002183274
Published online 15 March 2002
  1. Zamore P. D. RNA interference: listening to the sound of silence. Nat Struct Biol 2001; 8 : 746–50. [Google Scholar]
  2. Ambros V. microRNAs: tiny regulators with great potential. Cell 2001; 107 : 823–6. [Google Scholar]
  3. Wassarman KM, Storz G. Small RNAs in Escherichia coli. Trends Microbiol 1999; 7 : 37–45. [Google Scholar]
  4. Kelley RL, Kuroda MI. Noncoding RNA genes in dosage compensation and imprinting. Cell 2001; 103 : 9–12. [Google Scholar]
  5. Brzostowski J, Robinson C, Orford R, et al. RNA-dependent cytoplasmic anchoring of a transcription factor subunit during Xenopus development. EMBO J 2000; 19 : 3683–93. [Google Scholar]
  6. Ficzycz A, Ovsenek N. The Yin Yang 1 transcription factor associates with ribonucleoprotein (mRNP) complexes in the cytoplasm of xenopus oocytes. J Biol Chem 2001 (sous presse). [Google Scholar]
  7. Lanz RB, McKenna NJ, Onate SA, et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 1999; 97 : 17–27. [Google Scholar]
  8. Watanabe M, Yanagisawa J, Kitagawa H, et al. A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J 2001; 15 : 1341–52. [Google Scholar]
  9. Shi Y, Downes M, Xie W, et al. Sharp, an inducible cofactor that integartes nuclear receptor repression and activation. Genes Dev 2001; 15 : 1140–51. [Google Scholar]
  10. Montzka Wassarman K, Storz G. 6S RNA regulates E. coli RNA polymerase activity. Cell 2000; 101 : 613–23. [Google Scholar]
  11. Yang Z, Zhu Q, Luo K, Zhou Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 2001; 414 : 317–22. [Google Scholar]
  12. Nguyen VT, Kiss T, Michels AA, Bensaude O. 7SK snRNA binds to and inhibits the activity of Cdk9/cyclin T complexes. Nature 2001; 414 : 322–5. [Google Scholar]
  13. Price DH. P-TEFb, a cyclindependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 2000; 20 : 2629–34. [Google Scholar]
  14. Lee DK, Duan HO, Chang C. Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation. J Biol Chem 2001; 276 : 9978–84. [Google Scholar]
  15. Barboric M, Nissen RM, Kanazawa S, Jabrane-Ferrat N, Peterlin BM. NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol Cell 2001; 8 : 327–37. [Google Scholar]
  16. Zieve G. Penman S. Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell 1976; 8 : 19–31. [Google Scholar]
  17. Wassarman DA, Steitz JA. Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol Cell Biol 1991; 11 : 3432–45. [Google Scholar]
  18. Cassé C, Giannoni F, Nguyen VT, Dubois MF, Bensaude O. The transcriptional inhibitors, actinomycin D and α-amanitin, activate the HIV-1 promoter and favor phosphorylation of the RNA polymerase II C-terminal domain. J Biol Chem 1999; 274 : 16097–106. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.