Accès gratuit
Med Sci (Paris)
Volume 18, Numéro 2, Février 2002
Page(s) 193 - 204
Section M/S Revues : Articles de Synthèse
Publié en ligne 15 février 2002
  1. Kimmel CB, Warga RM. Tissue-specific cell lineages originate in the gastrula of the zebrafish. Science 1986; 231 : 365–8. [Google Scholar]
  2. Haffter P, Granato M, Brand M, et al. The identification of genes with unique and essential functions in the development of the zebrafish, danio rerio. Development 1996; 123 : 1–36. [Google Scholar]
  3. Driever W, Solnica-Krezel L, Schier AF, et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 1996; 123 : 37–46. [Google Scholar]
  4. Nasevicius A, Ekker S. Effective targeted gene knockdown in zebrafish. Nat Genet 2000; 26 : 216–20. [Google Scholar]
  5. DeRobertis EM, Larrain J, Oelgeschlâger M, Wessely O. The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat Genet 2000; 1 : 171–81. [Google Scholar]
  6. Kishimoto K Lee KL, Zon L. Hammerschmidt M, Schulte-Merker S. The molecular nature of zebrafish swirl : BMP2 function is essential during early dorsoventral patterning. Development 1997; 124 : 4457–66. [Google Scholar]
  7. Nikaido M, Tada M, Saji T, Ueno N. Conservation of BMP signaling in zebrafish mesoderm patterning. Mech Dev 1997; 61 : 75–88. [Google Scholar]
  8. Nguyen VH, Schmid B, Trout J, Connors SA, Ekker M, Mullins MC. Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev Biol 1998; 1 : 93–110. [Google Scholar]
  9. Schmid B, Fürthauer M, Connors SA, et al. Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 2000; 127 : 957–67. [Google Scholar]
  10. Hawley SHB, Wünnenberg-Stapleton K, Hashimoto C, et al. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 1995; 9 : 2923–35. [Google Scholar]
  11. Nishimatsu S, Thomsen GH. Ventral mesoderm induction and patterning by bone morphogenetic protein heterodimers in Xenopus embryos. Mech Dev 1998; 74 : 75–88. [Google Scholar]
  12. Smith WC, Harland RM. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 1992; 70 : 829–40. [Google Scholar]
  13. Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, DeRobertis EM. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 1994; 79 : 779–90. [Google Scholar]
  14. Fainsod A, Deissler K, Yelin R, et al. The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech Dev 1997; 63 : 39–50 [Google Scholar]
  15. De Robertis E. M. Dismantling the organizer. Nature 1995; 374 : 407–8. [Google Scholar]
  16. Holley SA, Jackson PD, Sasai Y , et al. Conserved system for dorso-ventral patterning in insects and vertebrates involving sog and chordin. Nature 1995; 376 : 249–53. [Google Scholar]
  17. Schulte-Merker S, Lee KJ, McMahon AP, Hammerschmidt M. The zebrafish organizer requires chordino. Nature 1997; 387 : 862–3. [Google Scholar]
  18. Piccolo S, Agius E, Lu B, Goodman S, Dale L, De Robertis EM. Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 1997; 91 : 407–16. [Google Scholar]
  19. Marques G, Musacchio M, Shimell MJ, Wunnenberg-Stapleton K, Cho KW, O’Connor MB. Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell 1997; 91 : 417–26. [Google Scholar]
  20. Connors SA, Trout J, Ekker M, Mullins MC. The role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. Development 1999; 126 : 3119–30. [Google Scholar]
  21. Bauer H, Meier A, Hild M, et al. Follistatin and noggin are excluded from the zebrafish organizer. Dev Biol 1998; 204 : 488–507. [Google Scholar]
  22. Fürthauer M, Thisse B, Thisse C. Three different noggin genes antagonize the activity of Bone Morphogenetic Proteins in the zebrafish embryo. Dev Biol 1999; 214 : 181–96. [Google Scholar]
  23. Miller-Bertoglio V, Carmany-Rampey A, Fürthauer M, et al. Maternal and zygotic activity of the zebrafish mercedes / ogon / short-tail locus antagonizes BMP signaling. Dev Biol 1999; 214 : 72–86. [Google Scholar]
  24. Fürthauer M, Thisse C, Thisse B. A role for FGF-8 in the dorsoventral patterning of the zebrafish gastrula. Development 1997; 124 : 4253–64. [Google Scholar]
  25. Crossley PH, Minowada G, McArthur CA, Martin GR. Roles for FGF8 in the induction, initiation and maintenance of chick limb development. Cell 1996; 84 : 127–36. [Google Scholar]
  26. Crossley PH, Martinez S, Martin GR. Midbrain development induced by fgf8 in the chick embryo. Nature 1996; 380 : 66–8. [Google Scholar]
  27. Meno C, Saijoh Y, Fujii H, et al. Left-right asymmetric expression of the TGFb family member lefty in mouse embryos. Nature 1996; 381 : 151–5. [Google Scholar]
  28. Oulad-Abdelghani M, Chazaud C, Biullet P, Matteri MG, Dollé P, Chambon P. Stra 3/Lefty, a retinoid acidinducible novel member of the transforming growth factor b family. Int J Dev Biol 1998; 42 : 23–32. [Google Scholar]
  29. Daopin S, Piez K.A, Ogawa Y, Davies DR. Crystal structure of transforming growth factor-beta 2: an unsual fold for the superfamily. Science 1992; 257 : 369–73. [Google Scholar]
  30. Schlunegger MP, Grutter MG. An unusual feature revealed by the crystal structure at 2.2 A resolution of human transforming growth factorbeta 2. Nature 1992; 395 : 185–9. [Google Scholar]
  31. Thisse C, Thisse B. Antivin, a novel and divergent member of the TGFβ superfamily, negatively regulates mesoderm induction. Development 1999; 126 : 229–40. [Google Scholar]
  32. Ruiz y Altaba A. Neural expression of the Xenopus homeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm. Development 1990; 108 : 595–604. [Google Scholar]
  33. Thomsen G, Woolf T, Whitman M, et al. Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 1990; 63 : 485–93. [Google Scholar]
  34. Green JBA, New HJ, Smith JC. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 1992; 71 : 731–9. [Google Scholar]
  35. Gurdon JB, Harger P, Mitchell A, Lemaire P. Activin signalling and response to a morphogen gradient. Nature 1994; 371 : 487–92. [Google Scholar]
  36. Jones CM, Kuehn MR, Hogan BL, Smith JC, Wright CV. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 1995; 121 : 3651–61. [Google Scholar]
  37. Gristman K, Talbot WS, Schier AF. Nodal signaling patterns the organizer. Development 2000; 127 : 921–32. [Google Scholar]
  38. Feldman B, Gates MA, Egan ES, et al. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 1998; 395 : 181–5. [Google Scholar]
  39. Schier AF, Neuhauss SC, Helde KA, Talbot WS, Driever W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 1997; 124 : 327–42. [Google Scholar]
  40. Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, Schier A. F. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 1999; 97 : 121–32. [Google Scholar]
  41. Agathon A, Thisse B, Thisse C. Morpholino knock-down of Antivin1 and Antivin2 upregulates Nodal signaling. Genesis 2001; 30 : 178–82. [Google Scholar]
  42. Thisse B, Wright CVE, Thisse C. Activin and Nodalrelated factors control antero-posterior patterning of the zebrafish embryo. Nature 2000; 403 : 425–7. [Google Scholar]
  43. Candia AF, Watabe T, Hawley SH, et al. Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 1997; 124 : 4467–80. [Google Scholar]
  44. Kelly GM, Greenstein P, Erezyilmaz DF, Moon RT. Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development 1995; 121 : 1787–99. [Google Scholar]
  45. Glinka A, Wu W, Deluis H, Monaghan AP, Blumenstock C, Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 1998; 391 : 357–62. [Google Scholar]
  46. Piccolo S, Aguis E, Leyns L, et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 1999; 397 : 707–10. [Google Scholar]
  47. Bradley L, Sun B, Collins-Racie L, LaVallie E, McCoy J, Sive H. Different activities of the frizzled-related proteins frzb2 and sizzled2 during Xenopus anteroposterior patterning. Dev Biol 2000; 227 : 118–32. [Google Scholar]
  48. Shinya M, Eschbach C, Clark M, Lehrach H, Furutani-Seiki M. Zebrafish Dkk1, induced by the pre-MBT Wnt signaling, is secreted from the prechordal plate and patterns the anterior neural plate. Mech Dev 2000; 98 : 3–17. [Google Scholar]
  49. Kazanskaya O, Glinka A, Niehrs C. The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning. Development 2000; 127 : 4981–92. [Google Scholar]
  50. Maden, M. Heads or tails? Retinoid acid will decide. Bioessays 1999; 21 : 809–12. [Google Scholar]
  51. Chen Y, Pollet N, Niehrs C, Pieler T. Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos. Mech Dev 2001; 101 : 91–103. [Google Scholar]
  52. Sakai Y, Meno C, Fujii H, et al. The retinoic acidinactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev 2001; 15 : 213–25. [Google Scholar]
  53. Abu-Abed S, Dollé P, Metzger D, Beckett B, Chambon P, Petkovich M. The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 2001; 15 : 226–40. [Google Scholar]
  54. Kimmel CB, Warga RM, Schilling TF. Origin and organisation of the zebrafish fate map. Development 1990, 108 : 581–94. [Google Scholar]
  55. Woo K, Fraser SC. Order and coherence in the fate map of the zebrafish nervous system. Development 1995; 121 : 2595–609. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.