Accès gratuit
Numéro |
Med Sci (Paris)
Volume 37, Novembre 2021
Les Cahiers de Myologie
|
|
---|---|---|
Page(s) | 40 - 43 | |
Section | Cas clinique | |
DOI | https://doi.org/10.1051/medsci/2021191 | |
Publié en ligne | 8 décembre 2021 |
- Coppens S, Barnard AM, Puusepp S, et al. A form of muscular dystrophy associated with pathogenic variants in JAG2. Am J Hum Genet 2021; 108 : 840–56. [CrossRef] [PubMed] [Google Scholar]
- Luo B, Aster JC, Hasserjian RP, et al. Isolation and functional analysis of a cDNA for human Jagged2, a gene encoding a ligand for the Notch1 receptor. Mol Cell Biol 1997 ; 17 : 6057–6067. [CrossRef] [PubMed] [Google Scholar]
- Deng Y, Madan A, Banta AB, et al. Characterization, chromosomal localization, and the complete 30-kb DNA sequence of the human Jagged2 (JAG2) gene. Genomics 2000 ; 63 : 133–138. [CrossRef] [PubMed] [Google Scholar]
- Suckling RJ, Korona B, Whiteman P, et al. Structural and functional dissection of the interplay between lipid and Notch binding by human Notch ligands. EMBO J 2017 ; 36 : 2204–2215. [CrossRef] [PubMed] [Google Scholar]
- Luo D, Renault VM, Rando TA. The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol 2005 ; 16 : 612–622. [CrossRef] [PubMed] [Google Scholar]
- Mourikis P, Tajbakhsh S. Distinct contextual roles for Notch signalling in skeletal muscle stem cells. BMC Dev Biol 2014; 14. doi:10.1186/1471-213X-14-2. [CrossRef] [PubMed] [Google Scholar]
- Mašek J, Andersson ER. The developmental biology of genetic notch disorders. Dev 2017 ; 144 : 1743–1763. [CrossRef] [PubMed] [Google Scholar]
- Li L, Krantz ID, Deng Y, Genin A, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for notch1. Nat Genet 1997 ; 16 : 243–251. [CrossRef] [PubMed] [Google Scholar]
- Grochowski CM, Loomes KM, Spinner NB. Jagged1 (JAG1): structure, expression, and disease associations. Gene 2016 ; 576 : 381–384. [CrossRef] [PubMed] [Google Scholar]
- Bauer RC, Laney AO, Smith R, et al. Jagged1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Hum Mutat 2010 ; 31 : 594–601. [CrossRef] [PubMed] [Google Scholar]
- Fischer-Zirnsak B, Segebrecht L, Schubach M, et al. Haploinsufficiency of the Notch ligand DLL1 Causes variable neurodevelopmental disorders. Am J Hum Genet 2019 ; 105 : 631–639. [CrossRef] [PubMed] [Google Scholar]
- Bulman MP, Kusumi K, Frayling TM, et al. Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 2000 ; 24 : 438–441. [CrossRef] [PubMed] [Google Scholar]
- Sullivan JM, Motley WW, Johnson JO, et al. Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy. J Clin Invest 2020; 130 : 1506–12. [CrossRef] [PubMed] [Google Scholar]
- Chabriat H, Joutel A, Dichgans M, et al. Lancet Neurol 2009 ; 8 : 643–653. [CrossRef] [PubMed] [Google Scholar]
- Mercuri E, Lampe A, Allsop J, et al. Muscle MRI in Ullrich congenital muscular dystrophy and Bethlem myopathy. Neuromuscul Disord 2005 ; 15 : 303–310. [CrossRef] [PubMed] [Google Scholar]
- Mercuri E, Cini C, Pichiecchio A, et al. Muscle magnetic resonance imaging in patients with congenital muscular dystrophy and Ullrich phenotype. Neuromuscul Disord 2003 ; 13 : 554–558. [CrossRef] [PubMed] [Google Scholar]
- Servián-Morilla E, Takeuchi H, Lee T V, et al. A POGLUT 1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Mol Med 2016 ; 8 : 1289–1309. 10.15252/emmm.201505815 [CrossRef] [PubMed] [Google Scholar]
- Bönnemann CG. The collagen VI-related myopathies: muscle meets its matrix. Nat Rev Neurol 2011 ; 7 : 379–390. [CrossRef] [PubMed] [Google Scholar]
- Briñas L, Richard P, Quijano-Roy S, et al. Early onset collagen VI myopathies: genetic and clinical correlations. Ann Neurol 2010 ; 68 : 511–520. [CrossRef] [PubMed] [Google Scholar]
- Logan CV, Lucke B, Pottinger C, et al. Mutations in MEGF10, a regulator of satellite cell myogenesis, cause early onset myopathy, areflexia, respiratory distress and dysphagia (EMARDD). Nat Genet 2011 ; 43 : 1189–1193. [CrossRef] [PubMed] [Google Scholar]
- Villar-Quiles RN, von der Hagen M, Métay C, et al. The clinical, histologic, and genotypic spectrum of SEPN1-related myopathy: a case series. Neurology 2020; 95 : e1512–27. [CrossRef] [PubMed] [Google Scholar]
- Sarkozy A, Foley AR, Zambon AA, et al. LAMA2-related dystrophies: clinical phenotypes, disease biomarkers, and clinical trial readiness. Front Mol Neurosci 2020; 13. doi:10.3389/fnmol.2020.00123. [PubMed] [Google Scholar]
- Muntoni F, Torelli S, Brockington M. Muscular dystrophies due to glycosylation defects. Neurotherapeutics 2008 ; 5 : 627–632. [CrossRef] [PubMed] [Google Scholar]
- Feichtinger RG, Mucha BE, Hengel H, et al. Biallelic variants in the transcription factor PAX7 are a new genetic cause of myopathy. Genet Med 2019 ; 21 : 2521–2531. [CrossRef] [PubMed] [Google Scholar]
- Saha M, Mitsuhashi S, Jones MD, et al. Consequences of MEGF10 deficiency on myoblast function and Notch1 interactions. Hum Mol Genet 2017 ; 26 : 2984–3000. [CrossRef] [PubMed] [Google Scholar]
- Castets P, Bertrand AT, Beuvin M, et al. Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Hum Mol Genet 2011 ; 20 : 694–704. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.