Open Access
| Issue |
Med Sci (Paris)
Volume 41, Octobre 2025
40 ans de médecine/sciences
|
|
|---|---|---|
| Page(s) | 97 - 102 | |
| Section | Néphrologie | |
| DOI | https://doi.org/10.1051/medsci/2025134 | |
| Published online | 10 October 2025 | |
- Hill NR, Fatoba ST, Oke JL, et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One 2016 ; 11 : e0158765. [CrossRef] [PubMed] [Google Scholar]
- Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004 ; 351 : 1296–305. [CrossRef] [PubMed] [Google Scholar]
- Foreman KJ, Marquez N, Dolgert A, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet 2018 ; 392 : 2052–90. [Google Scholar]
- Tarun T, Ghanta SN, Ong V, et al. Updates on new therapies for patients with CKD. Kidney Int Rep 2024 ; 9 : 16–28. [Google Scholar]
- Hostetter TH, Rennke HG, Brenner BM. Compensatory renal hemodynamic injury: a final common pathway of residual nephron destruction. Am J Kidney Dis 1982 ; 1 : 310–4. [Google Scholar]
- Lautrette A, Li S, Alili R, et al. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 2005 ; 11 : 867–74. [CrossRef] [PubMed] [Google Scholar]
- Terzi F, Burtin M, Hekmati M, et al. Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury. J Clin Invest 2000 ; 106 : 225–34. [CrossRef] [PubMed] [Google Scholar]
- Viau A, El Karoui K, Laouari D, et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest 2010 ; 120 : 4065–76. [Google Scholar]
- Marques E, Alves Teixeira M, Nguyen C, et al. Lipocalin-2 induces mitochondrial dysfunction in renal tubular cells via mTOR pathway activation. Cell Rep 2023 ; 42 : 113032. [Google Scholar]
- Bollee G, Flamant M, Schordan S, et al. Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat Med 2011 ; 17 : 1242–50. [Google Scholar]
- Wilson PD. Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta 2011 ; 1812 : 1239–48. [Google Scholar]
- Zeng F, Singh AB, Harris RC. The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology. Exp Cell Res 2009 ; 315 : 602–10. [Google Scholar]
- Hua H, Munk S, Whiteside CI. Endothelin-1 activates mesangial cell ERK1/2 via EGF-receptor transactivation and caveolin-1 interaction. Am J Physiol Renal Physiol 2003 ; 284 : F303–12. [Google Scholar]
- Huang S, Zhang A, Ding G, Chen R. Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation. Am J Physiol Renal Physiol 2009 ; 296 : F1323–33. [Google Scholar]
- Taniguchi K, Xia L, Goldberg HJ, et al. Inhibition of Src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes 2013 ; 62 : 3874–86. [Google Scholar]
- Laouari D, Burtin M, Phelep A, et al. TGF-alpha mediates genetic susceptibility to chronic kidney disease. J Am Soc Nephrol 2011 ; 22 : 327–35. [Google Scholar]
- Pillebout E, Weitzman JB, Burtin M, et al. JunD protects against chronic kidney disease by regulating paracrine mitogens. J Clin Invest 2003 ; 112 : 843–52. [CrossRef] [PubMed] [Google Scholar]
- Bienaime F, Muorah M, Metzger M, et al. Combining robust urine biomarkers to assess chronic kidney disease progression. EBioMedicine 2023 ; 93 : 104635. [Google Scholar]
- Mahipal A, Kothari N, Gupta S. Epidermal growth factor receptor inhibitors: coming of age. Cancer Control 2014 ; 21 : 74–9. [Google Scholar]
- Liu N, Guo JK, Pang M, et al. Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis. J Am Soc Nephrol 2012 ; 23 : 854–67. [Google Scholar]
- Knudsen SL, Mac AS, Henriksen L, et al. EGFR signaling patterns are regulated by its different ligands. Growth Factors 2014 ; 32 : 155–63. [Google Scholar]
- Mitchell RA, Luwor RB, Burgess AW. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics. Exp Cell Res 2018 ; 371 : 1–19. [Google Scholar]
- Singh B, Carpenter G, Coffey RJ. EGF receptor ligands: recent advances. F1000Res 2016 ; 5. [Google Scholar]
- Lowden DA, Lindemann GW, Merlino G, et al. Renal cysts in transgenic mice expressing transforming growth factor-alpha. J Lab Clin Med 1994 ; 124 : 386–94. [Google Scholar]
- Wong RW, Kwan RW, Mak PH, et al. Overexpression of epidermal growth factor induced hypospermatogenesis in transgenic mice. J Biol Chem 2000 ; 275 : 18297–301. [Google Scholar]
- Laouari D, Burtin M, Phelep A, et al. A transcriptional network underlies susceptibility to kidney disease progression. EMBO Mol Med 2012 ; 4 : 825–39. [Google Scholar]
- Humes HD, Cieslinski DA, Coimbra TM, et al. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. J Clin Invest 1989 ; 84 : 1757–61. [Google Scholar]
- Sandokji I, Greenberg JH. Plasma and urine biomarkers of CKD: a review of findings in the CKiD study. Semin Nephrol 2021 ; 41 : 416–26. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
