Open Access
Issue
Med Sci (Paris)
Volume 41, Octobre 2025
40 ans de médecine/sciences
Page(s) 47 - 55
Section Cardiologie
DOI https://doi.org/10.1051/medsci/2025130
Published online 10 October 2025
  1. Puymirat E, Simon T, Cayla G, et al. Acute myocardial infarction: changes in patient characteristics, management, and 6-month outcomes over a period of 20 years in the FAST-MI program (French registry of acute ST-elevation or non-ST-elevation myocardial infarction) 1995 to 2 015. Circulation 2017 ; 136 : 1908–19. [Google Scholar]
  2. Geisterfer-Lowrance AA, Kass S, et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 1990 ; 62 : 999–1006. [Google Scholar]
  3. Carrier L, Bonne G, Bährend E, et al. Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ Res. 1997 ; 80 :427–34. [Google Scholar]
  4. Anderson RL, Trivedi DV, Sarkar SS. Deciphering the super relaxed state of human beta-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. Proc Natl Acad Sci U S A 2018 ; 115 : E8143–52 [Google Scholar]
  5. Braunwald E, Saberi S, Abraham TP, et al. Mavacamten: a first-in-class myosin inhibitor for obstructive hypertrophic cardiomyopathy. Eur Heart J 2023 ; 44 : 4622–33. [Google Scholar]
  6. Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 2006 ; 86 : 515–81. [Google Scholar]
  7. Silvestre JS, Smadja DM, Lévy BI. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 2013 ; 93 : 1743–802. [Google Scholar]
  8. Berk BC, Weintraub WS, Alexander RW. Elevation of C-reactive protein in “active” coronary artery disease. Am J Cardiol 1990 ; 65 : 168–72. [Google Scholar]
  9. Tsimikas S, Willerson JT, Ridker PM. C-reactive protein and other emerging blood biomarkers to optimize risk stratification of vulnerable patients. J Am Coll Cardiol 2006 ; 47 : C19–31. [Google Scholar]
  10. Torii S, Jinnouchi H, Sakamoto A, et al. Drug-eluting coronary stents: insights from preclinical and pathology studies. Nat Rev Cardiol 2020 ; 17 : 37–51. [Google Scholar]
  11. Eltchaninoff H, Gilard M, Cribier A. TAVI at 20: how a crazy idea led to a clinical revolution. EuroIntervention 2022 ; 18 : 15–18. [Google Scholar]
  12. Garg J, Kabra R, Gopinathannair R, et al. State of the art in left atrial appendage occlusion. JACC Clin Electrophysiol 2025 ; 11 : 602–41. [Google Scholar]
  13. Haïssaguerre M, Jaïs P, Shah DC, Takahashi A. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary peins. New Engl J Med 1998 ; 339 : 659–66. [Google Scholar]
  14. Kosiborod MN, Abildstrøm SZ, Borlaug BA, et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J Med 2023 ; 389 : 1069–84. [Google Scholar]
  15. Packer M, Zile MR, Kramer CM, et al. Tirzepatide for heart failure with preserved ejection fraction and obesity. N Engl J Med 2025 ; 392 : 427–37. [Google Scholar]
  16. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in Type 2 diabetes. N Engl J Med 2015 ; 373 : 2117–28. [Google Scholar]
  17. Braunwald E. Gliflozins in the management of cardiovascular disease. N Engl J Med 2022 ; 386 : 2024–34. [Google Scholar]
  18. Abifadel M, Varret M, Rabès JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003 ; 34 :154–6. [Google Scholar]
  19. Lambert G, Costet P, Krempf M et al. PCSK9 : un nouveau gène impliqué dans l’hypercholestérolémie familiale. Med Sci (Paris) 2004 ; 20 : 1068–70 [Google Scholar]
  20. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006 ; 354 : 1264–72. [CrossRef] [PubMed] [Google Scholar]
  21. Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 2018 ; 379 : 2097–107. [Google Scholar]
  22. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017 ; 376 : 1713–22. [Google Scholar]
  23. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017 ; 377 : 1119–31. [CrossRef] [PubMed] [Google Scholar]
  24. National Institute of neurological disorders and stroke rt-PA stroke study group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995 ; 333 : 1581–87. [Google Scholar]
  25. Assessment of the safety and efficacy of a new thrombolytic (ASSENT-2) investigators, Van De Werf F, Adgey J, et al. Single-bolus tenecteplase compared with front-loaded alteplase in acute myocardial infarction: the ASSENT-2 double-blind randomised trial. Lancet 1999 ; 354 : 716–22. [Google Scholar]
  26. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016 ; 387 : 1723–31. [Google Scholar]
  27. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009 ; ;361 : 1139–51. [CrossRef] [PubMed] [Google Scholar]
  28. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014 ; 371 : 2488–98. [Google Scholar]
  29. Jaiswal S, Natarajan P, Silver AJ, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 2017 ; 377 : 111–21. [Google Scholar]
  30. Fuster JJ, MacLauchlan S, Zuriaga MA, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 2017 ; 355 : 842–47. [Google Scholar]
  31. Lipshultz SE, Rifai N, Dalton VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 2004 ; 351 : 145–53. [Google Scholar]
  32. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 1999 ; 344 : 783–92. [Google Scholar]
  33. Drobni ZD, Alvi RM, Taron J, et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 2020 ; 142: 2299–311. [CrossRef] [PubMed] [Google Scholar]
  34. Ascierto PA, Lipson EJ, Dummer R, et al. Nivolumab and relatlimab in patients with advanced melanoma that had progressed on anti-programmed death-1/programmed death ligand 1 therapy: results from the phase I/IIa RELATIVITY-020 trial. J Clin Oncol 2023 ; 41 : 2724–35. [Google Scholar]
  35. Groussin M et Mazel F. Évolution des microbiotes intestinaux de mammifères et ses conséquences sur la santé humaine. Med Sci (Paris) 2017 ; 33 : 1038–42. [Google Scholar]
  36. Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016 ; 535 : 56–64. [Google Scholar]
  37. Sansonetti PJ et Doré J. Le microbiome humain à l’épreuve de l’anthropocène — De la corrélation à la causalité et à l’intervention. Med Sci (Paris) 2024 ; 40 : 757–65. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Kuo CC, Gown AM, Benditt EP, Grayston JT. Detection of Chlamydia pneumoniae in aortic lesions of atherosclerosis by immunocytochemical stain. Arterioscler Thromb 1993 ; 13 : 1501–4. [Google Scholar]
  39. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011 ; 472 : 57–63. [CrossRef] [PubMed] [Google Scholar]
  40. Schiattarella GG, Sannino A, Toscano E, et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J 2017 ; 38 : 2948–56. [Google Scholar]
  41. Laurans L, Mouttoulingam N, Chajadine M, et al. An obesogenic diet increases atherosclerosis through promoting microbiota dysbiosis-induced gut lymphocyte trafficking into the periphery. Cell Rep 2023 ; 42 : 113350. [Google Scholar]
  42. Vieira-Silva S, Falony G, Belda E, et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 2020 ; 581 : 310–15. [Google Scholar]
  43. Momtazi-Borojeni AA, Banach M, Tabatabaei SA, Sahebkar A. Preclinical toxicity assessment of a peptide-based antiPCSK9 vaccine in healthy mice. Biomed. Pharmacother 2023 ; 158 : 114170. [Google Scholar]
  44. Zhao TX, Sriranjan RS, Tuong ZK, et al. Regulatory T-Cell Response to Low-Dose Interleukin-2 in Ischemic Heart Disease. NEJM Evid 2022 ; 1 : EVIDoa2100009. [Google Scholar]
  45. Zhao TX, Aetesam-Ur-Rahman M, Sage AP, et al. Rituximab in patients with acute ST-elevation myocardial infarction: an experimental medicine safety study. Cardiovasc Res 2022 ; 118 : 872–882. [CrossRef] [PubMed] [Google Scholar]
  46. Griffith BP, Goerlich CE, Singh AK, et al. Genetically Modified Porcine-to-Human Cardiac Xenotransplantation. N Engl J Med 2022 ; 387 : 35–44. [CrossRef] [PubMed] [Google Scholar]
  47. Kawai T, Williams WW, Elias N, et al. Xenotransplantation of a Porcine Kidney for End-Stage Kidney Disease. N Engl J Med 2025 Feb 7. doi: 10.1056/NEJMoa2412747. Online ahead of print. [Google Scholar]
  48. Loupy A, Goutaudier V, Giarraputo A, et al. Immune response after pig-to-human kidney xenotransplantation: a multimodal phenotyping study. Lancet 2023 ; 402 : 1158–69. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.