Open Access
Issue
Med Sci (Paris)
Volume 41, Octobre 2025
40 ans de médecine/sciences
Page(s) 30 - 46
Section Infectiologie
DOI https://doi.org/10.1051/medsci/2025129
Published online 10 October 2025
  1. World Health Organization. World health statistics 2024. Monitoring health for the SDGs, Sustainable Development Goals. 2025 : 86 p. [Google Scholar]
  2. Debré P. Épidémies: Leçons d’Histoire. Med Sci (Paris) 2020 ; 36 : 642–6. [Google Scholar]
  3. Morris A, Kellner JD, Low DE. The superbugs: evolution, dissemination and fitness. Curr Opin Microbiol 1998 ; 1 : 524–9. [Google Scholar]
  4. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infects Dis 2010 ; 10 : 597–602. [Google Scholar]
  5. Rowe JH, Ertelt JM, Xin L, et al. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 2012 ; 490 : 102–6. [Google Scholar]
  6. Deutscher M, Lewis M, Zell ER, et al. Incidence and severity of invasive Streptococcus pneumoniae, group A Streptococcus, and group B Streptococcus infections among pregnant and postpartum women. Clin Infect Dis 2011 ; 53 : 114–23. [Google Scholar]
  7. Wing DA, Fassett MJ, Getahun D. Acute pyelonephritis in pregnancy: an 18-year retrospective analysis. Am Jf Obstetd Gynecol 2014 ; 210 : 219.e1–219.e6. [Google Scholar]
  8. Silk BJ, Date KA, Jackson KA, et al. Invasive listeriosis in the foodborne diseases active surveillance network (FoodNet), 2004-2009: further targeted prevention eeded for higher-risk groups. Clin Infect Dis 2012 ; 54 : S396–404. [Google Scholar]
  9. Bokobza C, Van Steenwinckel J, Mani S, et al. Neuroinflammation in preterm babies and autism spectrum disorders. Pediatr Res 2019 ; 85 : 155–65. [Google Scholar]
  10. Lorea CF, Pressman K, Schuler-Faccini L. Infections during pregnancy: an ongoing threat. Seminn Perinatol 2025 ; 152075. [Google Scholar]
  11. Cohen A, Moschopoulos P, Stiehm RE, et al. Congenital varicella syndrome: the evidence for secondary prevention with varicella-zoster immune globulin. Can Med Assoc J 2011 ; 183 : 204–8. [Google Scholar]
  12. Shahar-Nissan K, Pardo J, Peled O, et al. Valaciclovir to prevent vertical transmission of cytomegalovirus after maternal primary infection during pregnancy: a randomised, double-blind, placebo-controlled trial. Lancet 2020 ; 396 : 779–85. [Google Scholar]
  13. Schleiss MR, Blázquez-Gamero D. Universal newborn screening for congenital cytomegalovirus infection. Lancet Child Adolesc Health 2025 ; 9 : 57–70. [Google Scholar]
  14. Forte E, Zhang Z, Thorp EB, et al. Cytomegalovirus latency and reactivation: an intricate interplay with the host immune response. Front Cell Infect Microbiol 2020 ; 10 : 130. [Google Scholar]
  15. Pesch MH, Schleiss MR. Emerging concepts in congenital cytomegalovirus. Pediatrics 2022 ; 150 : e2021055896. [Google Scholar]
  16. Boppana SB, Van Boven M, Britt WJ, et al. Vaccine value profile for cytomegalovirus. Vaccine 2023 ; 41 : S53–S75. [Google Scholar]
  17. Lilleri D, Gerna G. Maternal immune correlates of protection from human cytomegalovirus transmission to the fetus after primary infection in pregnancy. Rev Med Virol 2017 ; 27 : e1921. [Google Scholar]
  18. Oliveira WK de, França GVA de, Carmo EH, et al. Infection-related microcephaly after the 2 015 and 2016 Zika virus outbreaks in Brazil: a surveillance-based analysis. Lancet 2017 ; 390 : 861–70. [Google Scholar]
  19. Garcez PP, Loiola EC, Madeiro Da Costa R, et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 2016 ; 352 : 816–8. [Google Scholar]
  20. Cugola FR, Fernandes IR, Russo FB, et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 2016 ; 534 : 267–71. [Google Scholar]
  21. https://www.ecdc.europa.eu/en/publications-data/syphilis-annual-epidemiological-report-2023 [Google Scholar]
  22. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clins 2024 ; 74 : 229–63. [Google Scholar]
  23. Drolet M, Bénard É, Pérez N, et al. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis. Lancet 2019 ; 394 : 497–509. [Google Scholar]
  24. Brisson M, Kim JJ, Canfell K, et al. Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet 2020 ; 395 : 575–90. [Google Scholar]
  25. Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, et al. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Resp Mede 2018 ; 6 : 223–30. [Google Scholar]
  26. Flannery DD, Ramachandran V, Schrag SJ. Neonatal early-onset sepsis. Clin Perinatol 2025 ; 52 : 15–31. [Google Scholar]
  27. Romain A-S, Cohen R, Plainvert C, et al. Clinical and laboratory features of group B Streptococcus meningitis in infants and newborns: study of 848 cases in France, 2001-2014. Clin Infects Dis 2018 ; 66 : 857–64. [Google Scholar]
  28. Da Cunha V, Davies MR, Douarre P-E, et al. Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline. Nat Commun 2014 ; 5 : 4544. [Google Scholar]
  29. Madrid L, Seale AC, Kohli-Lynch M, et al. Infant group B streptococcal disease incidence and serotypes worldwide: systematic review and meta-analyses. Clin Infect Dis 2017 ; 65 : S160–72. [Google Scholar]
  30. Bjerkhaug AU, Ramalingham S, Mboizi R, et al. The immunogenicity and safety of Group B Streptococcal maternal vaccines: A systematic review. Vaccine 2024 ; 42 : 84–98. [Google Scholar]
  31. Pena JMS, Lannes-Costa PS, Nagao PE. Vaccines for Streptococcus agalactiae: current status and future perspectives. Front Immunol 2024 ; 15 : 1430901. [Google Scholar]
  32. Slattery J, Macfabe DF, Frye RE. The Significance of the enteric microbiome on the development of childhood disease: a review of prebiotic and probiotic therapies in disorders of childhood. Clin Med Insights Pediatr 2016 ; 10 : CMPed.S38338. [Google Scholar]
  33. Sadarangani M, Kollmann T, Bjornson G, et al. The fifth international neonatal and maternal immunization symposium (INMIS 2019): securing protection for the next generation. mSphere 2021 ; 6 : e00862–20. [Google Scholar]
  34. Qiu L, Chirman D, Clark JR, et al. Vaccines against extraintestinal pathogenic Escherichia coli (ExPEC): progress and challenges. Gut Microbes 2024 ; 16 : 2359691. [Google Scholar]
  35. Wen SCH, Ezure Y, Rolley L, et al. Gram-negative neonatal sepsis in low- and lower-middle-income countries and WHO empirical antibiotic recommendations: a systematic review and meta-analysis. PLoS Med 2021 ; 18 : e1003787. [Google Scholar]
  36. Ericson JE, Agthe AG, Weitkamp J-H. Late-onset sepsis. Clino Perinatolol 2025 ; 52 : 33–45. [Google Scholar]
  37. Connor NE, Islam MS, Mullany LC, et al. Risk factors for community-acquired bacterial infection among young infants in South Asia: a longitudinal cohort study with nested case-control analysis. BMJ Glob Health 2022 ; 7 : e009706. [Google Scholar]
  38. Yusuf N, Steinglass R, Gasse F, et al. Sustaining maternal and neonatal tetanus elimination (MNTE) in countries that have been validated for elimination – progress and challenges. BMC Public Health 2022 ; 22 : 691. [Google Scholar]
  39. Williams P, Qazi S, Agarwal R, et al. Antibiotics needed to treat multidrug-resistant infections in neonates. Bull World Health Org 2022 ; 100 : 797–807. [Google Scholar]
  40. McGann C, Phyu R, Bittinger K, et al. Role of the microbiome in neonatal infection. Clin Perinatol 2025 ; 52 : 147–66. [Google Scholar]
  41. Progress at last against RSV. Nat Med 2023 ; 29 : 2143. [Google Scholar]
  42. Wang X, Li Y, Shi T, et al. Global disease burden of and risk factors for acute lower respiratory infections caused by respiratory syncytial virus in preterm infants and young children in 2019: a systematic review and meta-analysis of aggregated and individual participant data. Lancet 2024 ; 403 : 1241–53. [Google Scholar]
  43. Drysdale SB, Cathie K, Flamein F, et al. Nirsevimab for prevention of hospitalizations due to RSV in infants. N Engl J Med 2023 ; 389 : 2425–35. [Google Scholar]
  44. Magalhães MI, Azevedo MJ, Castro F, et al. The link between obesity and the gut microbiota and immune system in early-life. Crit Re Microbio 2025 ; 51 : 264–84. [Google Scholar]
  45. Pieren DKJ, Boer MC, De Wit J. The adaptive immune system in early life: The shift makes it count. Front Immunol 2022 ; 13 : 1031924. [Google Scholar]
  46. Gibbons D, Fleming P, Virasami A, et al. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat Med 2014 ; 20 : 1206–10. [Google Scholar]
  47. Davenport MP, Smith NL, Rudd BD. Building a T cell compartment: how immune cell development shapes function. Nat Rev Immunol 2020 ; 20 : 499–506. [Google Scholar]
  48. Barug D, Pronk I, Van Houten MA, et al. Maternal pertussis vaccination and its effects on the immune response of infants aged up to 12 months in the Netherlands: an open-label, parallel, randomised controlled trial. Lancet Infect Dis 2019 ; 19 : 392–401. [Google Scholar]
  49. Dawod B, Marshall JS, Azad MB. Breastfeeding and the developmental origins of mucosal immunity: how human milk shapes the innate and adaptive mucosal immune systems. Curr Opin Gastroenterol 2021 ; 37 : 547–56. [Google Scholar]
  50. Victora CG, Bahl R, Barros AJD, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 2016 ; 387 : 475–90. [CrossRef] [PubMed] [Google Scholar]
  51. https://desapublications.un.org/publications/world-social-report-2023-leaving-no-one-behind-ageing-world [Google Scholar]
  52. Reinhardt UE. Does the aging of the population really drive the demand for health care? Health Aff 2003 ; 22 : 27–39. [Google Scholar]
  53. https://www.aihw.gov.au/reports/immunisation/the-burden-of-vaccine-preventable-diseases/summary [Google Scholar]
  54. Bender RG, Sirota SB, Swetschinski LR, et al. Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990-2021: a systematic analysis from the Global Burden of Disease Study 2021. Lancet Infect Diss 2024 ; 24 : 974–1002. [Google Scholar]
  55. Clegg A, Young J, Iliffe S, et al. Frailty in elderly people. Lancet 2013 ; 381 : 752–62. [Google Scholar]
  56. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc R Soc B 2015 ; 282 : 20143085. [CrossRef] [PubMed] [Google Scholar]
  57. Forbes HJ, Thomas SL, Smeeth L, et al. A systematic review and meta-analysis of risk factors for postherpetic neuralgia. Pain 2016 ; 157 : 30–54. [Google Scholar]
  58. Paget J, Spreeuwenberg P, Charu V, et al. Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project. J Glob Health 2019 ; 9 : 020421. [Google Scholar]
  59. Troeger C, Blacker B, Khalil IA, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infects Diss 2018 ; 18 : 1191–210. [Google Scholar]
  60. Hansen CL, Chaves SS, Demont C, et al. Mortality associated with influenza and respiratory syncytial virus in the US, 1999-2018. JAMA Netw Open 2022 ; 5 : e220527. [Google Scholar]
  61. Teng C, Reveles KR, Obodozie-Ofoegbu OO, et al. Clostridium difficile infection risk with important antibiotic classes: an analysis of the FDA adverse event reporting system. Int J Med Sci 2019 ; 16 : 630–5. [Google Scholar]
  62. Wilson C, Seaton RA. Antimicrobial Stewardship in the Frail Elderly. Br J Hosp Med 2024 ; 85 : 1–12. [Google Scholar]
  63. Wrona MV, Ghosh R, Coll K, et al. The 3 I’s of immunity and aging: immunosenescence, inflammaging, and immune resilience. Front Aging 2024 ; 5 : 1490302. [Google Scholar]
  64. Pawelec G, Bronikowski A, Cunnane SC, et al. The conundrum of human immune system “senescence.” Mech Ageing Dev 2020 ; 192 : 111357. [Google Scholar]
  65. Lee GC, Restrepo MI, Harper N, et al. Immunologic resilience and COVID-19 survival advantage. J Allergy Clinl Immunol 2021 ; 148 : 1176–91. [Google Scholar]
  66. Ahuja SK, Manoharan MS, Lee GC, et al. Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection. Nat Commun 2023 ; 14 : 3286. [Google Scholar]
  67. Camell CD, Yousefzadeh MJ, Zhu Y, et al. Senolytics reduce coronavirus-related mortality in old mice. Science 2021 ; 373 : eabe4832. [CrossRef] [PubMed] [Google Scholar]
  68. Amor C, Fernández-Maestre I, Chowdhury S, et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat Aging 2024 ; 4 : 336–49. [Google Scholar]
  69. Panda A, Qian F, Mohanty S, et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol 2010 ; 184 : 2518–27. [Google Scholar]
  70. Fernández-Ruiz M, Meije Y, Manuel O, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Introduction). Clin Microbiol Infect 2018 ; 24 : S2–S9. [Google Scholar]
  71. Willmann K, Moita LF. Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metab 2024 ; 36 : 927–46. [Google Scholar]
  72. Helaine S, Conlon BP, Davis KM, et al. Host stress drives tolerance and persistence: The bane of anti-microbial therapeutics. Cell Host Microbe 2024 ; 32 : 852–62. [Google Scholar]
  73. Mullis KB, Faloona FA. [21] Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 1987 : 335–50. [Google Scholar]
  74. Buchan BW, Ledeboer NA. Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev 2014 ; 27 : 783–822. [Google Scholar]
  75. Han G-R, Goncharov A, Eryilmaz M, et al. Machine learning in point-of-care testing: innovations, challenges, and opportunities. Nat Commun 2025 ; 16 : 3165. [Google Scholar]
  76. Hassan YM, Mohamed AS, Hassan YM, et al. Recent developments and future directions in point-of-care next-generation CRISPR-based rapid diagnosis. Clin Exp Med 2025 ; 25 : 33. [Google Scholar]
  77. Kocak DD, Gersbach CA. From CRISPR scissors to virus sensors. Nature 2018 ; 557 : 168–9. [Google Scholar]
  78. Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011 ; 471 : 602–7. [CrossRef] [PubMed] [Google Scholar]
  79. Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012 ; 337 : 816–21. [CrossRef] [PubMed] [Google Scholar]
  80. Wenger AM, Peluso P, Rowell WJ, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 2019 ; 37 : 1155–62. [Google Scholar]
  81. Li Y, Fehlmann T, Borcherding A, et al. CoolMPS: evaluation of antibody labeling based massively parallel non-coding RNA sequencing. Nucleic Acids Res 2021 ; 49 : e10. [Google Scholar]
  82. Henríquez L, Uribarri A, Portillo ME. Revisiting diagnostics: practical application of next-generation sequencing technologies for infectious diseases. Clin Microbiol Infect 2025 ; S1198743X2500093X. [Google Scholar]
  83. Gorzynski JE, Goenka SD, Shafin K, et al. Ultrarapid Nanopore genome sequencing in a critical care setting. N Engl J Med 2022 ; 386 : 700–2. [Google Scholar]
  84. Nielsen ME, Søgaard KK, Karst SM, et al. Application of rapid Nanopore metagenomic cell-free DNA sequencing to diagnose bloodstream infections: a prospective observational study. Microbiol Spectr 2025 ; 13 : e03295–24. [Google Scholar]
  85. Wang H, Ceylan Koydemir H, Qiu Y, et al. Early detection and classification of live bacteria using time-lapse coherent imaging and deep learning. Light Sci Appl 2020 ; 9 : 118. [Google Scholar]
  86. Reszetnik G, Hammond K, Mahshid S, et al. Next-generation rapid phenotypic antimicrobial susceptibility testing. Nat Commun 2024 ; 15 : 9719. [Google Scholar]
  87. Ferrer R, Martin-Loeches I, Phillips G, et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Critl Care Med 2014 ; 42 : 1749–55. [Google Scholar]
  88. Lee A, Mirrett S, Reller LB, et al. Detection of bloodstream infections in adults: how many blood cultures are needed? J Clin Microbiol 2007 ; 45 : 3546–8. [Google Scholar]
  89. Ganguli A, Lim J, Mostafa A, et al. A culture-free biphasic approach for sensitive and rapid detection of pathogens in dried whole-blood matrix. Proc Natl Acad Sci USA 2022 ; 119 : e2209607119. [Google Scholar]
  90. Abram TJ, Cherukury H, Ou C-Y, et al. Rapid bacterial detection and antibiotic susceptibility testing in whole blood using one-step, high throughput blood digital PCR. Lab Chip 2020 ; 20 : 477–89. [Google Scholar]
  91. Snow SJ. John Snow: the making of a hero? The Lancet 2008 ; 372 : 22–3. [Google Scholar]
  92. Friedman J, Liu P, Troeger CE, et al. Predictive performance of international COVID-19 mortality forecasting models. Nat Commun 2021 ; 12 : 2609. [Google Scholar]
  93. Funk S, Camacho A, Kucharski AJ, et al. Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15. PLoS Comput Biol 2019 ; 15 : e1006785. [Google Scholar]
  94. Brand SPC, Cavallaro M, Cumming F, et al. The role of vaccination and public awareness in forecasts of Mpox incidence in the United Kingdom. Nat Commun 2023 ; 14 : 4100. [Google Scholar]
  95. Hie B, Zhong ED, Berger B, et al. Learning the language of viral evolution and escape. Science 2021 ; 371 : 284–8. [Google Scholar]
  96. Gandon S, Day T, Metcalf CJE, et al. Forecasting Epidemiological and Evolutionary Dynamics of Infectious Diseases. Trends Ecol Evol 2016 ; 31 : 776–88. [Google Scholar]
  97. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022 ; 399 : 629–55. [CrossRef] [PubMed] [Google Scholar]
  98. Lewis K. The science of antibiotic discovery. Cell 2020 ; 181 : 29–45. [Google Scholar]
  99. Payne DJ, Gwynn MN, Holmes DJ, et al. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 2007 ; 6 : 29–40. [Google Scholar]
  100. Tommasi R, Brown DG, Walkup GK, et al. ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov 2015 ; 14 : 529–42. [Google Scholar]
  101. Wagenlehner FM, Gasink LB, McGovern PC, et al. Cefepime-taniborbactam in complicated urinary tract infection. N Engl J Med 2024 ; 390 : 611–22. [Google Scholar]
  102. Sato T, Yamawaki K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clinl Infect Diss 2019 ; 69 : S538–43. [Google Scholar]
  103. Liu B, Trout REL, Chu G-H, et al. Discovery of taniborbactam (VNRX-5133): a broad-spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections. J Med Chem 2020 ; 63 : 2789–801. [Google Scholar]
  104. Brüssow H. The antibiotic resistance crisis and the development of new antibiotics. Microbial Biotechnol 2024 ; 17 : e14510. [Google Scholar]
  105. Wong F, Zheng EJ, Valeri JA, et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 2024 ; 626 : 177–85. [Google Scholar]
  106. Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell 2020 ; 180 : 688–702.e13. [CrossRef] [PubMed] [Google Scholar]
  107. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J infect dis 2008 ; 197 : 1079–81. [Google Scholar]
  108. Santos-Júnior CD, Torres MDT, Duan Y, et al. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 2024 ; 187 : 3761–78.e16. [Google Scholar]
  109. Raman AS. Combatting superbugs using the evolutionary record of microbial warfare. Cell Host Microbe 2024 ; 32 : 1037–9. [Google Scholar]
  110. Kortright KE, Chan BK, Koff JL, et al. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 2019 ; 25 : 219–32. [Google Scholar]
  111. Uchechukwu CF, Shonekan A. Current status of clinical trials for phage therapy. J Med Microbiol 2024 ; 73. [Google Scholar]
  112. Bikard D, Euler CW, Jiang W, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 2014 ; 32 : 1146–1150. [CrossRef] [PubMed] [Google Scholar]
  113. Mühlen S, Dersch P. Anti-virulence strategies to target bacterial infections. In : Stadler M, Dersch P, editors. How to overcome the antibiotic crisis. Current Topics in Microbiology and Immunology. Cham : Springer International Publishing, 2015 : 147–83. [Google Scholar]
  114. Bassetti M, Poulakou G, Ruppe E, et al. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach. Intensive Care Med 2017 ; 43 : 1464–75. [Google Scholar]
  115. Sakari M, Laisi A, Pulliainen AT. Exotoxin-targeted drug modalities as antibiotic alternatives. ACS Infect Dis 2022 ; 8 : 433–56. [Google Scholar]
  116. Migone T-S, Subramanian GM, Zhong J, et al. Raxibacumab for the treatment of inhalational anthrax. N Engl J Med 2009 ; 361 : 135–44. [Google Scholar]
  117. Lowy I, Molrine DC, Leav BA, et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med 2010 ; 362 : 197–205. [Google Scholar]
  118. Bonomini A, Mercorelli B, Loregian A. Antiviral strategies against influenza virus: an update on approved and innovative therapeutic approaches. Cel Mol Life Sci 2025 ; 82 : 75. [Google Scholar]
  119. Nuwagaba J, Li JA, Ngo B, et al. 30 years of HIV therapy: Current and future antiviral drug targets. Virology 2025 ; 603 : 110362. [Google Scholar]
  120. Trickey A, Sabin CA, Burkholder G, et al. Life expectancy after 2 015 of adults with HIV on long-term antiretroviral therapy in Europe and North America: a collaborative analysis of cohort studies. Lancet HIV 2023 ; 10 : e295–307. [Google Scholar]
  121. Mandelbrot L, Tubiana R, Le Chenadec J, et al. No Perinatal HIV-1 Transmission from women with effective antiretroviral therapy starting before conception. Clin Infec Dis 2015 ; 61 : 1715–25. [Google Scholar]
  122. Stranix-Chibanda L, Brooks K, Eke AC. Care of pregnant women living with human immunodeficiency virus. Clin Perinatol 2024 ; 51 : 749–67. [Google Scholar]
  123. Hastie E, Hill L, Bamford L, et al. Long-acting injectable human immunodeficiency virus (HIV) therapy outcomes among persons with HIV who have adherence challenges to oral antiretroviral therapy. Clin Infec Dis 2025 ; ciaf120. [Google Scholar]
  124. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020 ; 383 : 2603–15. [CrossRef] [PubMed] [Google Scholar]
  125. Pulendran B, S. Arunachalam P, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov 2021 ; 20 : 454–75. [Google Scholar]
  126. Chiew Tong NK, Beran J, Kee SA, et al. Immunogenicity and safety of an adjuvanted hepatitis B vaccine in pre-hemodialysis and hemodialysis patients. Kidney Int 2005 ; 68 : 2298–303. [Google Scholar]
  127. Lal H, Cunningham AL, Godeaux O, et al. Efficacy of an adjuvanted Herpes Zosters subunit vaccine in older adults. N Engl J Med 2015 ; 372 : 2087–96. [Google Scholar]
  128. Locht C. Pertussis before, during and after Covid-19. EMBO Mol Med 2025 ; 17 : 594–8. [Google Scholar]
  129. Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020 ; 586 : 594–9. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  130. Arunachalam PS, Charles TP, Joag V, et al. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nat Med 2020 ; 26 : 932–40. [Google Scholar]
  131. Van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013 ; 368 : 407–15. [Google Scholar]
  132. Di Bella S, Sanson G, Monticelli J, et al. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024 ; 37 : e00135–23. [Google Scholar]
  133. Barrios Steed D, Koundakjian D, Harris AD, et al. Leveraging strain competition to address antimicrobial resistance with microbiota therapies. Gut Microbes 2025 ; 17 : 2488046. [Google Scholar]
  134. Lev-Sagie A, Goldman-Wohl D, Cohen Y, et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat Med 2019 ; 25 : 1500–04. [Google Scholar]
  135. Korpela K, Helve O, Kolho K-L, et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 2020 ; 183 : 324–34. e5. [CrossRef] [PubMed] [Google Scholar]
  136. Younge N, Patel RM. Probiotics and the risk of infection. Clinics in Perinatology 2025 ; 52 : 87–100. [Google Scholar]
  137. Wang Y, Florez ID, Morgan RL, et al. Probiotics, prebiotics, lactoferrin, and combination products for prevention of mortality and morbidity in preterm infants: a systematic review and network meta-analysis. JAMA Pediatr 2023 ; 177 : 1158. [Google Scholar]
  138. Henrick BM, Rodriguez L, Lakshmikanth T, et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 2021 ; 184 : 3884–98.e11. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.