Open Access
Issue
Med Sci (Paris)
Volume 41, Octobre 2025
40 ans de médecine/sciences
Page(s) 77 - 86
Section Immunologie
DOI https://doi.org/10.1051/medsci/2025128
Published online 10 October 2025
  1. Vogler B. AXEL et les fées cachées de m/s. Med Sci (Paris) 2021 ; 37 Hors-série n° 2 : 17–18. [Google Scholar]
  2. Carroll L, Alice’s adventures in wonderland, Macmillan and Co (London), 1865. [Google Scholar]
  3. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975 ; 256 : 495–7. [Google Scholar]
  4. Loken MR, Parks DR, Herzenberg LA. Two-color immunofluorescence using a fluorescence-activated cell sorter. J Histochem Cytochem 1977 ; 25 : 899–907. [Google Scholar]
  5. Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 1986 ; 51: 263–73. [Google Scholar]
  6. Bernard A, Boumsell L. The clusters of differentiation (CD) defined by the First International Workshop on Human Leucocyte Differentiation Antigens. Hum Immunol 1984 ; 11 : 1–10. [Google Scholar]
  7. Fiebig H, Behn I, Gruhn R, et al. Characterization of a series of monoclonal antibodies against human T cells. Allerg Immunol (Leipz) 1984 ; 30 : 242–50. [Google Scholar]
  8. Fiebig H, Behn I, Kupper H, Fiebach H. Characterization of monoclonal antibodies to human monocytes. Allerg Immunol (Leipz) 1985 ; 3 : 313–20. [Google Scholar]
  9. Kung P, Goldstein G, Reinherz EL, et al. Monoclonal antibodies defining distinctive human T cell surface antigens. Science 1979 ; 206 : 347–9. [Google Scholar]
  10. Reinherz EL, Kung PC, Goldstein G, et al. Separation of functional subsets of human T cells by a monoclonal antibody. Proc Natl Acad Sci U S A 1979 ; 76 : 4061–5. [Google Scholar]
  11. Friedman SM, Hunter SB, Irigoyen OH, et al. Functional analysis of human T cell subsets defined by monoclonal antibodies. II. Collaborative T-T interactions in the generation of TNP-altered-self-reactive cytotoxic T lymphocytes. J Immunol 1981 ; 126 : 1702–5. [Google Scholar]
  12. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995 ; 155 : 1151–64. [Google Scholar]
  13. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003 ; 299 : 1057–61. [Google Scholar]
  14. Klein U, Rajewsky K, Küppers R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 1998 ; 188 : 1679–89. [Google Scholar]
  15. Idziorek T, Cazareth J, Blanc C, et al. Que la lumière soit. Et si ce n’était plus seulement vrai ! Évolution de la cytométrie : du conventionnel à la masse (en passant par le spectre) Med Sci (Paris) 2018 ; 34 : 439–47. [Google Scholar]
  16. Ginhoux F, Guilliams M, Merad M. Expanding dendritic cell nomenclature in the single-cell era. Nat Rev Immunol 2022 ; 22 : 67–8. [Google Scholar]
  17. Tsagiopoulou M, Rashmi S, Aguilar-Fernandez S, et al. Multi-organ single-cell transcriptomics of immune cells uncovered organ-specific gene expression and functions. Sci Data 2024 ; 11 : 316. [Google Scholar]
  18. Jalali S, Harpur CM, Piers AT, et al. A high-dimensional cytometry atlas of peripheral blood over the human life span. Immunol Cell Biol 2022 ; 100 : 805–21. [Google Scholar]
  19. Domínguez Conde C, Xu C, Jarvis LB, et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 2022 ; 376 : eabl5197. [Google Scholar]
  20. Marquardt N, Kekäläinen E, Chen P, et al. Unique transcriptional and protein-expression signature in human lung tissue-resident NK cells. Nat Commun 2019 ; 10 : 3841. [Google Scholar]
  21. Lavin Y, Winter D, Blecher-Gonen R, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2014 ; 159 : 1312–26. [Google Scholar]
  22. Guilliams M, Svedberg FR. Does tissue imprinting restrict macrophage plasticity? Nat Immunol 2021 ; 22 : 118–127. [CrossRef] [PubMed] [Google Scholar]
  23. Delacher M, Imbusch CD, Hotz-Wagenblatt A, et al. Precursors for nonlymphoid-tissue Treg cells reside in secondary lymphoid organs and are programmed by the transcription factor BATF. Immunity 2020 ; 52 : 295–312.e11. [Google Scholar]
  24. Shevyrev D, Tereshchenko V. Treg heterogeneity, function, and homeostasis. Front Immunol 2020 : 10 : 3100. [Google Scholar]
  25. Morgan D, Tergaonkar V. Unraveling B cell trajectories at single cell resolution. Trends Immunol 2022 ; 43 : 210–29. [Google Scholar]
  26. Verstegen NJM, Pollastro S, Unger PA, et al. Single-cell analysis reveals dynamics of human B cell differentiation and identifies novel B and antibody-secreting cell intermediates. Elife 2023 ; 12 : e83578. [Google Scholar]
  27. Ma J, Wu Y, Ma L, Yang X, et al. A blueprint for tumor-infiltrating B cells across human cancers. Science 2024 ; 384 : eadj4857. [Google Scholar]
  28. Fitzsimons E, Qian D, Enica A, et al. A pan-cancer single-cell RNA-seq atlas of intratumoral B cells. Cancer Cell 2024 ; 42 : 1784–1797.e4. [Google Scholar]
  29. Louie RH, Luciani F. Recent advances in single-cell multimodal analysis to study immune cells. Immunol Cell Biol 2021 ; 99 : 157–67. [Google Scholar]
  30. Schäfer PSL, Dimitrov D, Villablanca EJ, et al. Integrating single-cell multi-omics and prior biological knowledge for a functional characterization of the immune system. Nat Immunol 2024 ; 25 : 405–17. [Google Scholar]
  31. Litchfield K, Reading JL, Puttick C, et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 2021 ; 184 : 596–614.e14. [Google Scholar]
  32. Captier N, Lerousseau M, Orlhac F, et al. Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancer. Nat Commun 2025 ; 16 : 614. [Google Scholar]
  33. Tatoud R, Lévy Y, Le Grand R, et al. In danger: HIV vaccine research and development in Europe. PLOS Glob Public Health 2025 ; 5 : e0004364. [Google Scholar]
  34. Gaebler C, Nogueira L, Stoffel E, et al. Prolonged viral suppression with anti-HIV-1 antibody therapy. Nature 2022 ; 606 : 368–374. [Google Scholar]
  35. Burton DR. Antiviral neutralizing antibodies: from in vitro to in vivo activity Nat Rev Immunol 2023 ; 23 : 720–34. [Google Scholar]
  36. Norman DJ, Shield CF 3rd, Barry J, et al. A U.S. clinical study of Orthoclone OKT3 in renal transplantation. Transplant Proc 1987 ; 19 : 21–7. [Google Scholar]
  37. Cosimi AB. Clinical development of Orthoclone OKT3. Transplant Proc 1987 ; 19 : 7–16. [Google Scholar]
  38. Gershon D. Centocor staggered by poor clinical results. Nature 1993 ; 361 : 290. [Google Scholar]
  39. Hozumi N, Tonegawa S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc Natl Acad Sci U S A 1976 ; 73 : 3628–32. [Google Scholar]
  40. Reynaud CA, Anquez V, Dahan A., A single rearrangement event generates most of the chicken immunoglobulin light chain diversity. Cell 1985 ; 40 : 283–91. [Google Scholar]
  41. Yancopoulos GD, Blackwell TK, Suh H, et al. Introduced T cell receptor variable region gene segments recombine in pre-B cells: evidence that B and T cells use a common recombinase. Cell 1986 ; 44 : 251–9. [Google Scholar]
  42. Matsunami N, Hamaguchi Y, Yamamoto Y, et al. A protein binding to the J kappa recombination sequence of immunoglobulin genes contains a sequence related to the integrase motif. Nature 1989 ; 342 : 934–7. [Google Scholar]
  43. Oettinger MA, Schatz DG, Gorka C, et al. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 1990 ; 248 : 1517–23. [Google Scholar]
  44. Muramatsu M, Sankaranand VS, Anant S, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 1999 ; 274 : 18470–6. [Google Scholar]
  45. Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 2000 ; 102 : 565–75. [Google Scholar]
  46. Zinkernagel RM, Doherty PC. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 1974 ; 248 : 701–2. [Google Scholar]
  47. Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily--CTLA-4. Nature 1987 ; 328 : 267–70. [Google Scholar]
  48. Triebel F, Jitsukawa S, Baixeras E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 1990 ; 171 : 1393–405. [CrossRef] [PubMed] [Google Scholar]
  49. Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992 ; 11 : 3887–95. [Google Scholar]
  50. Rouvier E, Luciani MF, Mattéi MG, et al. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 1993 ; 150 : 5445–56. [Google Scholar]
  51. Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996 ; 183 : 2593–603. [CrossRef] [PubMed] [Google Scholar]
  52. Wülfing C, Davis MM. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 1998 ; 282 : 2266–9. [Google Scholar]
  53. Delon J, Bercovici N, Liblau R, et al. Imaging antigen recognition by naive CD4+ T cells: compulsory cytoskeletal alterations for the triggering of an intracellular calcium response. Eur J Immunol 1998 ; 28 : 716–29. [Google Scholar]
  54. Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation. Science 1999 ; 285 : 221–7. [Google Scholar]
  55. Fassett MS, Davis DM, Valter MM, et al. Signaling at the inhibitory natural killer cell immune synapse regulates lipid raft polarization but not class I MHC clustering. Proc Natl Acad Sci U S A 2001 ; 98 : 14547–52. [Google Scholar]
  56. Venkitaraman AR, Williams GT, Dariavach P, et al. The B-cell antigen receptor of the five immunoglobulin classes. Nature 1991 ; 352 : 777–81. [Google Scholar]
  57. Clark MR, Campbell KS, Kazlauskas A, et al. The B cell antigen receptor complex: association of Ig-alpha and Ig-beta with distinct cytoplasmic effectors. Science 1992 ; 258 : 123–6. [Google Scholar]
  58. Hedrick SM, Cohen DI, Nielsen EA, et al. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 1984 ; 308 : 149–53. [Google Scholar]
  59. Hedrick SM, Nielsen EA, Kavaler J, et al. Sequence relationships between putative T-cell receptor polypeptides and immunoglobulins. Nature 1984 ; 308 : 153–8. [Google Scholar]
  60. Yanagi Y, Yoshikai Y, Leggett K, et al. A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 1984 ; 308 : 145–9. [Google Scholar]
  61. Meuer SC, Hussey RE, Cantrell DA, et al. Triggering of the T3-Ti antigen-receptor complex results in clonal T-cell proliferation through an interleukin 2-dependent autocrine pathway. Proc Natl Acad Sci U S A 1984 ; 81 : 1509–13. [Google Scholar]
  62. Weissman AM, Baniyash M, Hou D, et al. Molecular cloning of the zeta chain of the T cell antigen receptor. Science 1988 ; 239 : 1018–21. [Google Scholar]
  63. Reth MG. Antigen receptor tail clue. Nature 1989 ; 338 : 383–4. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  64. Amigorena S, Bonnerot C, Drake JR, et al. Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science 1992 ; 256 : 1808–12. [Google Scholar]
  65. Amigorena S, Salamero J, Davoust J, et al. Tyrosine-containing motif that transduces cell activation signals also determines internalization and antigen presentation via type III receptors for IgG. Nature 1992 ; 358 : 337–41. [Google Scholar]
  66. Vivier E, Rochet N, Kochan JP, et al. Structural similarity between Fc receptors and T cell receptors. Expression of the gamma-subunit of Fc epsilon RI in human T cells, natural killer cells and thymocytes. J Immunol 1991 ; 147 : 4263–70. [Google Scholar]
  67. Vivier E, Morin P, O’Brien C, et al. Tyrosine phosphorylation of the Fc gamma RIII(CD16): zeta complex in human natural killer cells. Induction by antibody-dependent cytotoxicity but not by natural killing. J Immunol 1991 ; 146 : 206–10. [Google Scholar]
  68. Ra C, Jouvin MH, Blank U, et al. A macrophage Fc gamma receptor and the mast cell receptor for IgE share an identical subunit. Nature 1989 ; 341 : 752–4. [Google Scholar]
  69. Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986 ; 136 : 2348–57. [Google Scholar]
  70. Del Prete, G.F., M. De Carli, C. Mastromauro, R. et al. Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J Clin Invest 1991 ; 88 : 346–50. [Google Scholar]
  71. Snapper CM, Paul WE. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 1987 ; 236 : 944–7. [Google Scholar]
  72. Hacein-Bey-Abina S, Le Deist F, Carlier F, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002 ; 346 : 1185–93. [Google Scholar]
  73. Gaspar HB, Parsley KL, Howe S, et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004 ; 364 : 2181–7. [Google Scholar]
  74. Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 1993 ; 73 : 147–57. [Google Scholar]
  75. Casanova JL, MacMicking JD, Nathan CF. Interferon-γ and infectious diseases: Lessons and prospects. Science 2024 ; 384 : eadl2016. [Google Scholar]
  76. Casanova JL, Peel J, Donadieu J, et al. Thecouroboros of autoimmunity. Nat Immunol 2024 ; 25 : 743–54. [Google Scholar]
  77. Oppenheim JJ, Zachariae CO, Mukaida N, et al. Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu Rev Immunol 1991 ; 9 : 617–48. [Google Scholar]
  78. Neote K, DiGregorio D, Mak JY, et al. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell 1993 ; 72 : 415–25. [Google Scholar]
  79. Hedrick JA, Zlotnik A. Chemokines and lymphocyte biology. Curr Opin Immunol 1996 ; 8 : 343–7. [Google Scholar]
  80. Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 1991 ; 67 : 1033–6. [Google Scholar]
  81. Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989 ; 54 Pt 1: 1–13. [Google Scholar]
  82. Liu, Y. Janeway, Jr, CA. Microbial induction of costimulatory activity for CD4 T cell growth. Int Immunol. 1991 ; 3 : 323–32. [Google Scholar]
  83. Janeway CA Jr. The immune system evolved to discriminate infectious non-self from noninfectious self. Immunol Today 1992 ; 13 : 11–6. [Google Scholar]
  84. Janeway CA Jr, Goodnow CC, Medzhitov R. Danger - pathogen on the premises! Immunological tolerance. Curr Biol 1996 ; 6 : 519–22. [Google Scholar]
  85. Ridge, JP. Fuchs, EJ. Matzinger, P. Neonatal tolerance revisited: Turning on newborn T cells with dendritic cells. Science 1996 ; 271 : 1723–26. [Google Scholar]
  86. Matzinger, P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994 ; 12 : 991–1045. [CrossRef] [PubMed] [Google Scholar]
  87. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in the Tlr4 gene. Science 1998 ; 282 : 2085–8. [CrossRef] [PubMed] [Google Scholar]
  88. Poltorak A, Ricciardi-Castagnoli P, Citterio S, et al. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci U S A 2000 ; 97 : 2163–7. [Google Scholar]
  89. Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996, 86 : 973–983. [CrossRef] [PubMed] [Google Scholar]
  90. Lemaitre B, Meister M, Govind S, et al. Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. EMBO J 1995 ; 14 : 536–45. [Google Scholar]
  91. Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997 ; 388 : 394–7. [Google Scholar]
  92. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973 ; 137 : 1142–62. [CrossRef] [PubMed] [Google Scholar]
  93. Steinman RM, Witmer MD. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci USA 1978, 75 : 5132–6. [Google Scholar]
  94. Schuler G, Steinman RM. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 1985 ; 161 : 526–46. [CrossRef] [PubMed] [Google Scholar]
  95. Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 2012 ; 30 : 1–22. [CrossRef] [PubMed] [Google Scholar]
  96. Zitvogel L, Amigorena S, Teillaud JL. À propos de Ralph M. Steinman et des cellules dendritiques. Prix Nobel de Médecine 2011 : Ralph M. Steinman, Jules A. Hoffman et Bruce A. Beutler. Med Sci (Paris) 2011 ; 27 : 1028–34. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  97. Strachan T, Sodoyer R, Damotte M, et al. Complete nucleotide sequence of a functional class I HLA gene, HLA-A3: implications for the evolution of HLA genes. EMBO J 1984 ; 3 : 887–94. [Google Scholar]
  98. Wallny HJ, Rammensee HG. Identification of classical minor histocompatibility antigen as cell-derived peptide. Nature 1990 ; 343 : 275–8. [Google Scholar]
  99. Rötzschke O, Falk K, Deres K, et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 1990 ; 348 : 252–4. [Google Scholar]
  100. van Bleek GM, Nathenson SG. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature 1990 ; 348 : 213–6. [Google Scholar]
  101. Rudensky Y, Preston-Hurlburt P, Hong SC, et al. Sequence analysis of peptides bound to MHC class II molecules. Nature 1991 ; 353 : 622–7. [Google Scholar]
  102. van Bleek GM, Nathenson SG. The structure of the antigen-binding groove of major histocompatibility complex class I molecules determines specific selection of self-peptides. Proc Natl Acad Sci U S A 1991 ; 88 : 11032–6. [Google Scholar]
  103. Rosenberg SA, Mulé JJ, Spiess PJ, et al. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med 1985 ; 161 : 1169–88. [Google Scholar]
  104. Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985 ; 313 : 1485–92. [Google Scholar]
  105. Spiess PJ, Yang JC, Rosenberg SA. In vivo antitumor activity of tumor-infiltrating lymphocytes expanded in recombinant interleukin-2. J Natl Cancer Inst 1987 ; 79 : 1067–75. [Google Scholar]
  106. Knuth A, Wölfel T, Klehmann, et al. Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection. Proc Natl Acad Sci U S A 1989 ; 86 : 2804–8. [Google Scholar]
  107. van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991 ; 254 : 1643–7. [Google Scholar]
  108. Boon T, van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med 1996 ; 183 : 725–9. [Google Scholar]
  109. Martinon F, Krishnan S, Lenzen G, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 1993 ; 23 : 1719–22. [CrossRef] [PubMed] [Google Scholar]
  110. Weissman D, Ni H, Scales D, et al. HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J Immunol 2000 ; 165 : 4710–7. [CrossRef] [PubMed] [Google Scholar]
  111. Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005 ; 23 : 165–75. [CrossRef] [PubMed] [Google Scholar]
  112. Dieu-Nosjean MC, Teillaud JL. Prix Nobel de physiologie ou médecine 2023 : une révolution vaccinale portée par la recherche fondamentale en immunologie et en biologie moléculaire. Med Sci (Paris) 2024 ; 40 : 186–191. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  113. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 1989 ; 86 : 10024–8. [CrossRef] [PubMed] [Google Scholar]
  114. Eshhar Z, Bach N, Fitzer-Attas CJ, et al. The T-body approach: potential for cancer immunotherapy. Springer Semin Immunopathol 1996 ; 18 : 199–209. [Google Scholar]
  115. Brentjens RJ, Davila ML, Rivière I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2014 ; 5 : 177ra38. [Google Scholar]
  116. Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013 ; 368 : 1509–18. [CrossRef] [PubMed] [Google Scholar]
  117. Skerra A, Pluckthün A. Assembly of a functional immunoglobulin F, fragment in Escherichia coli. Science 1988 ; 240 : 1038–40. [Google Scholar]
  118. Huston JS, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody-binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 1988 ; 85 : 5879–83. [Google Scholar]
  119. Bird RE, Hardman KD, Jacobson JW, et al. Single-chain antigen-binding proteins. Science 1988 ; 242: 423–6. [Google Scholar]
  120. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985 ; 228 : 1315–7. [Google Scholar]
  121. McCafferty J, Griffiths AD, Winter G, et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990 ; 348 : 552–4. [Google Scholar]
  122. Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 1997 ; 15 : 553–7. [Google Scholar]
  123. Minard P. L’évolution dirigée des protéines. Med Sci (Paris) 2019 ; 35 : 169–75. [Google Scholar]
  124. Canonica GW, Mingari MC, Melioli G, et al. Imbalances of T cell subpopulations in patients with atopic diseases and effect of specific immunotherapy. J Immunol 1979 ; 123 : 2669–72. [Google Scholar]
  125. Moriya N, Nagaoki T, Okuda N, et al. Suppression of adult B cell differentiation in pokeweed mitogen-stimulated cultures by Fc(IgG) receptor-negative T cells from cord blood. J Immunol 1979 ; 123 : 1795–8. [Google Scholar]
  126. Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994 ; 1 : 405–13. [Google Scholar]
  127. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996 ; 271 : 1734–6. [Google Scholar]
  128. Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002 ; 99 : 12293–7. [Google Scholar]
  129. Teillaud JL. L’immunothérapie des cancers couronnée avec l’attribution du prix Nobel de Physiologie ou Médecine à James Allison et Tasuku Honjo. Med Sci (Paris) 2019 ; 35 : 365–6. [Google Scholar]
  130. Picker LJ, Butcher EC. Physiological and molecular mechanisms of lymphocyte homing. Annual Rev Immunol 1992 ; 10 : 561–91. [Google Scholar]
  131. Kratz A, Campos-Neto A, Hanson MS, et al. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J Exp Med 1996 ; 183 : 1461–72. [Google Scholar]
  132. Dieu-Nosjean MC, Antoine M, Danel C, et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 2008 ; 26 : 4410–7. [CrossRef] [PubMed] [Google Scholar]
  133. Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol 2022 ; 40 : 413–42. [Google Scholar]
  134. Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response, Nature 2020 ; 577 : 549–55. [Google Scholar]
  135. Teillaud JL, Houel A, Panouillot M, et al, Tertiary lymphoid structures in anticancer immunity. Nature Rev Cancer 2024 ; 24 : 629–46. [Google Scholar]
  136. Pagès F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005 ; 353 : 2654–66. [Google Scholar]
  137. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006 ; 313 : 1960–4. [Google Scholar]
  138. Vivier E, Rebuffet L, Narni-Mancinelli E, et al. Natural killer cell therapies. Nature 2024 ; 626 : 727–36. [Google Scholar]
  139. Wiesheu R, Coffelt SB. From backstage to the spotlight: gdT cells in cancer. Cancer Cell 2024 ; 42 : 1637–42. [Google Scholar]
  140. Behmoaras J, Mulder K, Ginhoux F, et al. The spatial and temporal activation of macrophages during fibrosis. Nat Rev Immunol 2025, sous presse. [Google Scholar]
  141. Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on. Cell 2018 ; 174 : 1054–66. [Google Scholar]
  142. Amit M, Eichwald T, Roger A, et al. Neuro-immune cross-talk in cancer. Nat Rev Cancer 2025, sous presse. [Google Scholar]
  143. Fluckiger A, Daillère R, Sassi M, et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 2020 ; 369 : 936–42. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.