Open Access
Issue
Med Sci (Paris)
Volume 41, Number 5, Mai 2025
Enjeux et objectifs de la psychiatrie de précision
Page(s) 469 - 476
Section La psychiatrie de précision (PEPR PROPSY) : hypothèses et outils
DOI https://doi.org/10.1051/medsci/2025070
Published online 26 May 2025
  1. Robertson CE, Baron-Cohen S. Sensory perception in autism. Nat Rev Neurosci 2017 ; 18 : 671–84. [CrossRef] [PubMed] [Google Scholar]
  2. Lefebvre A, Traut N, Pedoux A, et al. Exploring the multidimensional nature of repetitive and restricted behaviors and interests (RRBI) in autism: neuroanatomical correlates and clinical implications. Mol Autism 2023 ; 14 : 45. [CrossRef] [PubMed] [Google Scholar]
  3. Bogdanova OV, Bogdanov VB, Pizano A, et al. The current view on the paradox of pain in autism spectrum disorders. Front Psychiatry 2022 ; 13 : 910824. [CrossRef] [PubMed] [Google Scholar]
  4. Ruelle-Le Glaunec L, Inquimbert P, Hugel S, et al. Nociception, douleur et autisme. Med Sci (Paris) 2021 ; 37 : 141–51. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Zhuo C, Tian H, Fang T, et al. Neural mechanisms underlying visual and auditory processing impairments in schizophrenia: insight into the etiology and implications for tailoring preventive and therapeutic interventions. Am J Transl Res 2020 ; 12 : 7657–69. [PubMed] [Google Scholar]
  6. Dondé C, Kantrowitz JT, Medalia A, et al. Early auditory processing dysfunction in schizophrenia: mechanisms and implications. Neurosci Biobehav Rev 2023 ; 148 : 105098. [CrossRef] [PubMed] [Google Scholar]
  7. Canbeyli R. Sensory stimulation via the visual, auditory, olfactory and gustatory systems can modulate mood and depression. Eur J Neurosci 2022 ; 55 : 244–63. [CrossRef] [PubMed] [Google Scholar]
  8. Burrows K, DeVille DC, Cosgrove KT, et al. Impact of serotonergic medication on interoception in major depressive disorder. Biol Psychol 2022 ; 169 : 108286. [CrossRef] [PubMed] [Google Scholar]
  9. Gigliotti F, Giovannone F, Belli A, et al. Atypical sensory processing in neurodevelopmental disorders: clinical phenotypes in preschool-aged children. Children 2024 ; 11 : 875. [CrossRef] [PubMed] [Google Scholar]
  10. Boogert F van den, Klein K, Spaan P, et al. Sensory processing difficulties in psychiatric disorders: a meta-analysis. J Psychiatr Res 2022 ; 151 : 173–80. [CrossRef] [PubMed] [Google Scholar]
  11. Gara SK, Chhetri AG, Alrjoob M, et al. The sensory abnormalities and neuropsychopathology of autism and anxiety. Cureus 2020 ; 12 : e8071. [PubMed] [Google Scholar]
  12. Salle S de la, Bowers H, Birmingham M, et al. Auditory P50 sensory gating alterations in major depressive disorder and their relationship to clinical symptoms. Psychiatry Res Neuroimaging 2024 ; 341 : 111813. [CrossRef] [PubMed] [Google Scholar]
  13. Kamath V, Paksarian D, Cui L, et al. Olfactory processing in bipolar disorder, major depression, and anxiety. Bipolar Disord 2018 ; 20 : 547–55. [CrossRef] [PubMed] [Google Scholar]
  14. Fitzgerald PJ. Gray colored glasses: is major depression partially a sensory perceptual disorder? J Affect Disord 2013 ; 151 : 418–22. [CrossRef] [PubMed] [Google Scholar]
  15. Moulard M, Cosker E, Angioi-Duprez K, et al. Retinal markers of therapeutic responses in major depressive disorder: effects of antidepressants on retinal function. J Psychiatr Res 2022 ; 154 : 71–9. [CrossRef] [PubMed] [Google Scholar]
  16. Kazour F, Richa S, Desmidt T, et al. Olfactory and gustatory functions in bipolar disorders: a systematic review. Neurosci Biobehav Rev 2017 ; 80 : 69–79. [CrossRef] [PubMed] [Google Scholar]
  17. Kim DJ, Mirmina J, Narine S, et al. Altered physical pain processing in different psychiatric conditions. Neurosci Biobehav Rev 2022 ; 133 : 104510. [CrossRef] [PubMed] [Google Scholar]
  18. Wu W, Zhang Y, Jiang J, et al. An electroencephalographic signature predicts antidepressant response in major depression. Nat Biotechnol 2020 ; 38 : 439–47. [CrossRef] [PubMed] [Google Scholar]
  19. McLean CK, Narayan S, Lin SY, et al. Lithium-associated transcriptional regulation of CRMP1 in patient-derived olfactory neurons and symptom changes in bipolar disorder. Transl Psychiatry 2018 ; 8 : 81. [CrossRef] [PubMed] [Google Scholar]
  20. Robertson CE, Ratai EM, Kanwisher N. Reduced GABAergic action in the autistic brain. Curr Biol 2016 ; 26 : 80–5. [CrossRef] [PubMed] [Google Scholar]
  21. Huang Q, Velthuis H, Pereira AC, et al. Exploratory evidence for differences in GABAergic regulation of auditory processing in autism spectrum disorder. Transl Psychiatry 2023 ; 13 : 320. [CrossRef] [PubMed] [Google Scholar]
  22. Bossu JL, Roux S. Les modèles animaux d’étude de l’autisme: le modèle « valproate ». Med Sci (Paris) 2019 ; 35 : 236–43. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Weber S, Hjelmervik H, Craven AR, et al. Glutamate and GABA-modulated connectivity in auditory hallucinations: a combined resting state fMRI and MR spectroscopy study. Front Psychiatry 2021 ; 12 : 643564. [CrossRef] [PubMed] [Google Scholar]
  24. Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 2019 ; 102 : 75–90. [CrossRef] [PubMed] [Google Scholar]
  25. Zhang Y, Bonnan A, Bony G, et al. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1−/y mice. Nat Neurosci 2014 ; 17 : 1701–9. [CrossRef] [PubMed] [Google Scholar]
  26. Tsugiyama LE, Ida-Eto M, Ohkawara T, et al. Altered neuronal activity in the auditory brainstem following sound stimulation in thalidomide-induced autism model rats. Congenit Anom 2020 ; 60 : 82–6. [CrossRef] [PubMed] [Google Scholar]
  27. Castro AC, Monteiro P. Auditory dysfunction in animal models of autism spectrum disorder. Front Mol Neurosci 2022 ; 15 : 845155. [CrossRef] [PubMed] [Google Scholar]
  28. Gordon A, Salomon D, Barak N, et al. Expression of Cntnap2 (Caspr2) in multiple levels of sensory systems. Mol Cell Neurosci 2016 ; 70 : 42–53. [CrossRef] [PubMed] [Google Scholar]
  29. Gaskin PL, Alexander SP, Fone KC. Neonatal phencyclidine administration and post-weaning social isolation as a dual-hit model of ‘schizophrenia-like’ behaviour in the rat. Psychopharmacology (Berl) 2014 ; 231 : 2533–45. [CrossRef] [PubMed] [Google Scholar]
  30. Khan S, Hashmi JA, Mamashli F, et al. Altered onset response dynamics in somatosensory processing in autism spectrum disorder. Front Neurosci 2016 ; 10 : 255. [PubMed] [Google Scholar]
  31. Ibi D, Nagai T, Koike H, et al. Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood. Behav Brain Res 2010 ; 206 : 32–7. [CrossRef] [PubMed] [Google Scholar]
  32. Athanassi A, Dorado Doncel R, Bath KG, et al. Relationship between depression and olfactory sensory function: a review. Chem Senses 2021 ; 46 : bjab044. [CrossRef] [PubMed] [Google Scholar]
  33. Guidi S, Bianchi P, Stagni F, et al. Lithium restores age-related olfactory impairment in the Ts65Dn mouse model of down syndrome. CNS Neurol Disord Drug Targets 2017 ; 16 : 812–9. [CrossRef] [PubMed] [Google Scholar]
  34. Holiga Š, Hipp JF, Chatham CH, et al. Patients with autism spectrum disorders display reproducible functional connectivity alterations. Sci Transl Med 2019 ; 11 : eaat9223. [CrossRef] [PubMed] [Google Scholar]
  35. Karavallil Achuthan S, Stavrinos D, Argueta P, et al. Thalamic functional connectivity and sensorimotor processing in neurodevelopmental disorders. Front Neurosci 2023 ; 17 : 1279909. [CrossRef] [PubMed] [Google Scholar]
  36. Jassim N, Baron-Cohen S, Suckling J. Meta-analytic evidence of differential prefrontal and early sensory cortex activity during non-social sensory perception in autism. Neurosci Biobehav Rev 2021 ; 127 : 146–57. [CrossRef] [PubMed] [Google Scholar]
  37. Rojas DC, Wilson LB. γ-Band abnormalities as markers of autism spectrum disorders. Biomark Med 2014 ; 8 : 353–68. [CrossRef] [PubMed] [Google Scholar]
  38. Shen CL, Chou TL, Lai WS, et al. P50, N100, and P200 auditory sensory gating deficits in schizophrenia patients. Front Psychiatry 2020 ; 11 : 868. [CrossRef] [PubMed] [Google Scholar]
  39. Shaffer JJ, Johnson CP, Fiedorowicz JG, et al. Impaired sensory processing measured by functional MRI in bipolar disorder manic and depressed mood states. Brain Imaging Behav 2018 ; 12 : 837–47. [CrossRef] [PubMed] [Google Scholar]
  40. Tan A, Schwitzer T, Conart JB, et al. Study of retinal structure and function in patients with major depressive disorder, bipolar disorder or schizophrenia: a review of the literature. J Fr Ophtalmol 2020 ; 43 : e157–66. [CrossRef] [PubMed] [Google Scholar]
  41. Schwitzer T, Leboyer M, Laprévote V, et al. Using retinal electrophysiology toward precision psychiatry. Eur Psychiatry 2022 ; 65 : e9. [CrossRef] [PubMed] [Google Scholar]
  42. Cosker E, Moulard M, Baumann C, et al. Complete evaluation of retinal function in major depressive disorder: from central slowdown to hyperactive periphery. J Affect Disord 2021 ; 295 : 453–62. [CrossRef] [PubMed] [Google Scholar]
  43. Khandaker GM, Cousins L, Deakin J, et al. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2015 ; 2 : 258–70. [CrossRef] [PubMed] [Google Scholar]
  44. Murck H, Braunisch MC, Konrad C, et al. Markers of mineralocorticoid receptor function: changes over time and relationship to response in patients with major depression. Int Clin Psychopharmacol 2019 ; 34 : 18–26. [CrossRef] [PubMed] [Google Scholar]
  45. Fornaro M, Bandini F, Ogliastro C, et al. Electroretinographic assessment in major depressed patients receiving duloxetine: might differences between responders and non-responders indicate a differential biological background? J Affect Disord 2011 ; 135 : 154–9. [CrossRef] [PubMed] [Google Scholar]
  46. Casanova MF, Sokhadze EM, Casanova EL, et al. Transcranial magnetic stimulation in autism spectrum disorders: neuropathological underpinnings and clinical correlations. Semin Pediatr Neurol 2020 ; 35 : 100832. [CrossRef] [PubMed] [Google Scholar]
  47. Dougall N, Maayan N, Soares-Weiser K, et al. Transcranial magnetic stimulation (TMS) for schizophrenia. Cochrane Database Syst Rev 2015 ; CD006081. [PubMed] [Google Scholar]
  48. Sapey-Triomphe LA, Moulin A, Sonié S, et al. The Glasgow sensory questionnaire: validation of a french language version and refinement of sensory profiles of people with high autism-apectrum quotient. J Autism Dev Disord 2018 ; 48 : 1549–65. [CrossRef] [PubMed] [Google Scholar]
  49. Bréchot C. La recherche translationnelle en santé, un nouveau paradigme. Med Sci (Paris) 2004 ; 20 : 939–40. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. SFARI. Coordinating animal- and human-based research on sensory alterations in autism spectrum disorders. SFARI workshop report, 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.