Open Access
Numéro
Med Sci (Paris)
Volume 41, Numéro 5, Mai 2025
Enjeux et objectifs de la psychiatrie de précision
Page(s) 469 - 476
Section La psychiatrie de précision (PEPR PROPSY) : hypothèses et outils
DOI https://doi.org/10.1051/medsci/2025070
Publié en ligne 26 mai 2025
  1. Robertson CE, Baron-Cohen S. Sensory perception in autism. Nat Rev Neurosci 2017 ; 18 : 671–84. [CrossRef] [PubMed] [Google Scholar]
  2. Lefebvre A, Traut N, Pedoux A, et al. Exploring the multidimensional nature of repetitive and restricted behaviors and interests (RRBI) in autism: neuroanatomical correlates and clinical implications. Mol Autism 2023 ; 14 : 45. [CrossRef] [PubMed] [Google Scholar]
  3. Bogdanova OV, Bogdanov VB, Pizano A, et al. The current view on the paradox of pain in autism spectrum disorders. Front Psychiatry 2022 ; 13 : 910824. [CrossRef] [PubMed] [Google Scholar]
  4. Ruelle-Le Glaunec L, Inquimbert P, Hugel S, et al. Nociception, douleur et autisme. Med Sci (Paris) 2021 ; 37 : 141–51. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Zhuo C, Tian H, Fang T, et al. Neural mechanisms underlying visual and auditory processing impairments in schizophrenia: insight into the etiology and implications for tailoring preventive and therapeutic interventions. Am J Transl Res 2020 ; 12 : 7657–69. [PubMed] [Google Scholar]
  6. Dondé C, Kantrowitz JT, Medalia A, et al. Early auditory processing dysfunction in schizophrenia: mechanisms and implications. Neurosci Biobehav Rev 2023 ; 148 : 105098. [CrossRef] [PubMed] [Google Scholar]
  7. Canbeyli R. Sensory stimulation via the visual, auditory, olfactory and gustatory systems can modulate mood and depression. Eur J Neurosci 2022 ; 55 : 244–63. [CrossRef] [PubMed] [Google Scholar]
  8. Burrows K, DeVille DC, Cosgrove KT, et al. Impact of serotonergic medication on interoception in major depressive disorder. Biol Psychol 2022 ; 169 : 108286. [CrossRef] [PubMed] [Google Scholar]
  9. Gigliotti F, Giovannone F, Belli A, et al. Atypical sensory processing in neurodevelopmental disorders: clinical phenotypes in preschool-aged children. Children 2024 ; 11 : 875. [CrossRef] [PubMed] [Google Scholar]
  10. Boogert F van den, Klein K, Spaan P, et al. Sensory processing difficulties in psychiatric disorders: a meta-analysis. J Psychiatr Res 2022 ; 151 : 173–80. [CrossRef] [PubMed] [Google Scholar]
  11. Gara SK, Chhetri AG, Alrjoob M, et al. The sensory abnormalities and neuropsychopathology of autism and anxiety. Cureus 2020 ; 12 : e8071. [PubMed] [Google Scholar]
  12. Salle S de la, Bowers H, Birmingham M, et al. Auditory P50 sensory gating alterations in major depressive disorder and their relationship to clinical symptoms. Psychiatry Res Neuroimaging 2024 ; 341 : 111813. [CrossRef] [PubMed] [Google Scholar]
  13. Kamath V, Paksarian D, Cui L, et al. Olfactory processing in bipolar disorder, major depression, and anxiety. Bipolar Disord 2018 ; 20 : 547–55. [CrossRef] [PubMed] [Google Scholar]
  14. Fitzgerald PJ. Gray colored glasses: is major depression partially a sensory perceptual disorder? J Affect Disord 2013 ; 151 : 418–22. [CrossRef] [PubMed] [Google Scholar]
  15. Moulard M, Cosker E, Angioi-Duprez K, et al. Retinal markers of therapeutic responses in major depressive disorder: effects of antidepressants on retinal function. J Psychiatr Res 2022 ; 154 : 71–9. [CrossRef] [PubMed] [Google Scholar]
  16. Kazour F, Richa S, Desmidt T, et al. Olfactory and gustatory functions in bipolar disorders: a systematic review. Neurosci Biobehav Rev 2017 ; 80 : 69–79. [CrossRef] [PubMed] [Google Scholar]
  17. Kim DJ, Mirmina J, Narine S, et al. Altered physical pain processing in different psychiatric conditions. Neurosci Biobehav Rev 2022 ; 133 : 104510. [CrossRef] [PubMed] [Google Scholar]
  18. Wu W, Zhang Y, Jiang J, et al. An electroencephalographic signature predicts antidepressant response in major depression. Nat Biotechnol 2020 ; 38 : 439–47. [CrossRef] [PubMed] [Google Scholar]
  19. McLean CK, Narayan S, Lin SY, et al. Lithium-associated transcriptional regulation of CRMP1 in patient-derived olfactory neurons and symptom changes in bipolar disorder. Transl Psychiatry 2018 ; 8 : 81. [CrossRef] [PubMed] [Google Scholar]
  20. Robertson CE, Ratai EM, Kanwisher N. Reduced GABAergic action in the autistic brain. Curr Biol 2016 ; 26 : 80–5. [CrossRef] [PubMed] [Google Scholar]
  21. Huang Q, Velthuis H, Pereira AC, et al. Exploratory evidence for differences in GABAergic regulation of auditory processing in autism spectrum disorder. Transl Psychiatry 2023 ; 13 : 320. [CrossRef] [PubMed] [Google Scholar]
  22. Bossu JL, Roux S. Les modèles animaux d’étude de l’autisme: le modèle « valproate ». Med Sci (Paris) 2019 ; 35 : 236–43. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  23. Weber S, Hjelmervik H, Craven AR, et al. Glutamate and GABA-modulated connectivity in auditory hallucinations: a combined resting state fMRI and MR spectroscopy study. Front Psychiatry 2021 ; 12 : 643564. [CrossRef] [PubMed] [Google Scholar]
  24. Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 2019 ; 102 : 75–90. [CrossRef] [PubMed] [Google Scholar]
  25. Zhang Y, Bonnan A, Bony G, et al. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1−/y mice. Nat Neurosci 2014 ; 17 : 1701–9. [CrossRef] [PubMed] [Google Scholar]
  26. Tsugiyama LE, Ida-Eto M, Ohkawara T, et al. Altered neuronal activity in the auditory brainstem following sound stimulation in thalidomide-induced autism model rats. Congenit Anom 2020 ; 60 : 82–6. [CrossRef] [PubMed] [Google Scholar]
  27. Castro AC, Monteiro P. Auditory dysfunction in animal models of autism spectrum disorder. Front Mol Neurosci 2022 ; 15 : 845155. [CrossRef] [PubMed] [Google Scholar]
  28. Gordon A, Salomon D, Barak N, et al. Expression of Cntnap2 (Caspr2) in multiple levels of sensory systems. Mol Cell Neurosci 2016 ; 70 : 42–53. [CrossRef] [PubMed] [Google Scholar]
  29. Gaskin PL, Alexander SP, Fone KC. Neonatal phencyclidine administration and post-weaning social isolation as a dual-hit model of ‘schizophrenia-like’ behaviour in the rat. Psychopharmacology (Berl) 2014 ; 231 : 2533–45. [CrossRef] [PubMed] [Google Scholar]
  30. Khan S, Hashmi JA, Mamashli F, et al. Altered onset response dynamics in somatosensory processing in autism spectrum disorder. Front Neurosci 2016 ; 10 : 255. [PubMed] [Google Scholar]
  31. Ibi D, Nagai T, Koike H, et al. Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood. Behav Brain Res 2010 ; 206 : 32–7. [CrossRef] [PubMed] [Google Scholar]
  32. Athanassi A, Dorado Doncel R, Bath KG, et al. Relationship between depression and olfactory sensory function: a review. Chem Senses 2021 ; 46 : bjab044. [CrossRef] [PubMed] [Google Scholar]
  33. Guidi S, Bianchi P, Stagni F, et al. Lithium restores age-related olfactory impairment in the Ts65Dn mouse model of down syndrome. CNS Neurol Disord Drug Targets 2017 ; 16 : 812–9. [CrossRef] [PubMed] [Google Scholar]
  34. Holiga Š, Hipp JF, Chatham CH, et al. Patients with autism spectrum disorders display reproducible functional connectivity alterations. Sci Transl Med 2019 ; 11 : eaat9223. [CrossRef] [PubMed] [Google Scholar]
  35. Karavallil Achuthan S, Stavrinos D, Argueta P, et al. Thalamic functional connectivity and sensorimotor processing in neurodevelopmental disorders. Front Neurosci 2023 ; 17 : 1279909. [CrossRef] [PubMed] [Google Scholar]
  36. Jassim N, Baron-Cohen S, Suckling J. Meta-analytic evidence of differential prefrontal and early sensory cortex activity during non-social sensory perception in autism. Neurosci Biobehav Rev 2021 ; 127 : 146–57. [CrossRef] [PubMed] [Google Scholar]
  37. Rojas DC, Wilson LB. γ-Band abnormalities as markers of autism spectrum disorders. Biomark Med 2014 ; 8 : 353–68. [CrossRef] [PubMed] [Google Scholar]
  38. Shen CL, Chou TL, Lai WS, et al. P50, N100, and P200 auditory sensory gating deficits in schizophrenia patients. Front Psychiatry 2020 ; 11 : 868. [CrossRef] [PubMed] [Google Scholar]
  39. Shaffer JJ, Johnson CP, Fiedorowicz JG, et al. Impaired sensory processing measured by functional MRI in bipolar disorder manic and depressed mood states. Brain Imaging Behav 2018 ; 12 : 837–47. [CrossRef] [PubMed] [Google Scholar]
  40. Tan A, Schwitzer T, Conart JB, et al. Study of retinal structure and function in patients with major depressive disorder, bipolar disorder or schizophrenia: a review of the literature. J Fr Ophtalmol 2020 ; 43 : e157–66. [CrossRef] [PubMed] [Google Scholar]
  41. Schwitzer T, Leboyer M, Laprévote V, et al. Using retinal electrophysiology toward precision psychiatry. Eur Psychiatry 2022 ; 65 : e9. [CrossRef] [PubMed] [Google Scholar]
  42. Cosker E, Moulard M, Baumann C, et al. Complete evaluation of retinal function in major depressive disorder: from central slowdown to hyperactive periphery. J Affect Disord 2021 ; 295 : 453–62. [CrossRef] [PubMed] [Google Scholar]
  43. Khandaker GM, Cousins L, Deakin J, et al. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2015 ; 2 : 258–70. [CrossRef] [PubMed] [Google Scholar]
  44. Murck H, Braunisch MC, Konrad C, et al. Markers of mineralocorticoid receptor function: changes over time and relationship to response in patients with major depression. Int Clin Psychopharmacol 2019 ; 34 : 18–26. [CrossRef] [PubMed] [Google Scholar]
  45. Fornaro M, Bandini F, Ogliastro C, et al. Electroretinographic assessment in major depressed patients receiving duloxetine: might differences between responders and non-responders indicate a differential biological background? J Affect Disord 2011 ; 135 : 154–9. [CrossRef] [PubMed] [Google Scholar]
  46. Casanova MF, Sokhadze EM, Casanova EL, et al. Transcranial magnetic stimulation in autism spectrum disorders: neuropathological underpinnings and clinical correlations. Semin Pediatr Neurol 2020 ; 35 : 100832. [CrossRef] [PubMed] [Google Scholar]
  47. Dougall N, Maayan N, Soares-Weiser K, et al. Transcranial magnetic stimulation (TMS) for schizophrenia. Cochrane Database Syst Rev 2015 ; CD006081. [PubMed] [Google Scholar]
  48. Sapey-Triomphe LA, Moulin A, Sonié S, et al. The Glasgow sensory questionnaire: validation of a french language version and refinement of sensory profiles of people with high autism-apectrum quotient. J Autism Dev Disord 2018 ; 48 : 1549–65. [CrossRef] [PubMed] [Google Scholar]
  49. Bréchot C. La recherche translationnelle en santé, un nouveau paradigme. Med Sci (Paris) 2004 ; 20 : 939–40. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. SFARI. Coordinating animal- and human-based research on sensory alterations in autism spectrum disorders. SFARI workshop report, 2019. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.