Open Access
Issue |
Med Sci (Paris)
Volume 41, Number 5, Mai 2025
Enjeux et objectifs de la psychiatrie de précision
|
|
---|---|---|
Page(s) | 500 - 507 | |
Section | La psychiatrie de précision (PEPR PROPSY) : premiers succès | |
DOI | https://doi.org/10.1051/medsci/2025061 | |
Published online | 26 May 2025 |
- Schneckenburger R. La distinction entre neurologie et psychiatrie en France entre 1940 et 1968 : le point de vue de quelques neuropsychiatres. Les Cahiers du Centre Georges Canguilhem 2018 ; 7 : 33–54. [CrossRef] [Google Scholar]
- Blackman G, Neri G, Al-Doori O, et al. Prevalence of neuroradiological abnormalities in first-episode psychosis: a systematic review and meta-analysis. JAMA Psychiatry 2023 ; 80 : 1047–54. [CrossRef] [PubMed] [Google Scholar]
- Allen P, Modinos G, Hubl D, et al. Neuroimaging auditory hallucinations in schizophrenia: from neuroanatomy to neurochemistry and beyond. Schizophr Bull 2012 ; 38 : 695–703. [CrossRef] [PubMed] [Google Scholar]
- Jardri R, Favrod J, Laroi F. Psychothérapies des hallucinations. Issy-les-Moulineaux : Elsevier Masson SAS, 2016 : 352 p. [Google Scholar]
- Leichsenring F, Steinert C, Rabung S, et al. The efficacy of psychotherapies and pharmacotherapies for mental disorders in adults : an umbrella review and meta-analytic evaluation of recent meta-analyses. World Psychiatry 2022 ; 21 : 133–45. [CrossRef] [PubMed] [Google Scholar]
- Dhamala E, Yeo BTT, Holmes AJ. One size does not fit all: methodological considerations for brain-based predictive modeling in psychiatry. Biol Psychiatry 2023 ; 93 : 717–28. [CrossRef] [PubMed] [Google Scholar]
- Larivière S, Paquola C, Park B, et al. The ENIGMA Toolbox: multiscale neural contextualization of multisite neuroimaging datasets. Nat Methods 2021 ; 18 : 698–700. [CrossRef] [PubMed] [Google Scholar]
- Zinkstok JR, Boot E, Bassett AS, et al. Neurobiological perspective of 22q11.2 deletion syndrome. Lancet Psychiatry 2019 ; 6 : 951–60. [CrossRef] [PubMed] [Google Scholar]
- Schneider M, Debbané M, Bassett AS, et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the international consortium on brain and behavior in 22q11.2 deletion syndrome. AJP 2014 ; 171 : 627–39. [CrossRef] [PubMed] [Google Scholar]
- Sun D, Ching CRK, Lin A, et al. Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: convergence with idiopathic psychosis and effects of deletion size. Mol Psychiatry 2020 ; 25 : 1822–34. [CrossRef] [PubMed] [Google Scholar]
- Pierrefeu A de, Löfstedt T, Laidi C, et al. Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity. Acta Psychiatr Scand 2018 ; 138 : 571–80. [CrossRef] [PubMed] [Google Scholar]
- Demazeux S, Pidoux V. Le projet RDoC — La classification psychiatrique de demain ? Med Sci (Paris) 2015 ; 31 : 792–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Noble S, Spann MN, Tokoglu F, et al. Influences on the test-retest reliability of functional connectivity MRI and its relationship with behavioral utility. Cereb Cortex 2017 ; 27 : 5415–29. [CrossRef] [PubMed] [Google Scholar]
- Rutherford S, Barkema P, Tso IF, et al. Evidence for embracing normative modeling. Elife 2023 ; 12 : e85082. [CrossRef] [PubMed] [Google Scholar]
- Abi-Dargham A, Moeller SJ, Ali F, et al. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023 ; 22 : 236–62. [CrossRef] [PubMed] [Google Scholar]
- Nunes A, Schnack HG, Ching CRK, et al. Using structural MRI to identify bipolar disorders — 13 site machine learning study in 3020 individuals from the ENIGMA bipolar disorders working group. Mol Psychiatry 2020 ; 25 : 2130–43. [CrossRef] [PubMed] [Google Scholar]
- Collin G, Seidman LJ, Keshavan MS, et al. Functional connectome organization predicts conversion to psychosis in clinical high-risk youth from the SHARP program. Mol Psychiatry 2020 ; 25 : 2431–40. [CrossRef] [PubMed] [Google Scholar]
- Brucar LR, Feczko E, Fair DA, et al. Current approaches in computational psychiatry for the data-driven identification of brain-based subtypes. Biol Psychiatry 2022 ; 93 : 704–16. [Google Scholar]
- Scott J, Hidalgo-Mazzei D, Strawbridge R, et al. Prospective cohort study of early biosignatures of response to lithium in bipolar-I-disorders: overview of the H2020-funded R-LiNK initiative. Int J Bipolar Disord 2019 ; 7 : 20. [CrossRef] [PubMed] [Google Scholar]
- Poulet E, Bubrovszky M, Bulteau S, et al. Stimulation magnétique transcrânienne répétitive : Applications en psychiatrie. Tours : PUFR, 2019 : 390. [Google Scholar]
- Boyer M, Baudin P, Stengel C, et al. In vivo low-intensity magnetic pulses durably alter neocortical neuron excitability and spontaneous activity. J Physiol 2022 ; 600 : 4019–37. [CrossRef] [PubMed] [Google Scholar]
- Bradley C, Nydam AS, Dux PE, et al. State-dependent effects of neural stimulation on brain function and cognition. Nat Rev Neurosci 2022 ; 23 : 459–75. [CrossRef] [PubMed] [Google Scholar]
- Caulfield KA, Fleischmann HH, Cox CE, et al. Neuronavigation maximizes accuracy and precision in TMS positioning: Evidence from 11,230 distance, angle, and electric field modeling measurements. Brain Stimulation 2022 ; 15 : 1192–205. [CrossRef] [PubMed] [Google Scholar]
- Fox MD, Buckner RL, White MP, et al. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry 2012 ; 72 : 595–603. [CrossRef] [PubMed] [Google Scholar]
- Cash RFH, Cocchi L, Lv J, et al. Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry 2021 ; 78 : 337–9. [CrossRef] [PubMed] [Google Scholar]
- Siddiqi SH, Weigand A, Pascual-Leone A, et al. Identification of personalized transcranial magnetic stimulation targets based on subgenual cingulate connectivity: an independent replication. Biol Psychiatry 2021 ; 90 : e55–e56. [CrossRef] [PubMed] [Google Scholar]
- Elbau IG, Lynch CJ, Downar J, et al. Functional connectivity mapping for rTMS target selection in depression. Am J Psychiatry 2023 ; 180 : 230–40. [CrossRef] [PubMed] [Google Scholar]
- Cole EJ, Stimpson KH, Bentzley BS, et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. AJP 2020 ; 177 : 716–26. [CrossRef] [PubMed] [Google Scholar]
- Cole EJ, Phillips AL, Bentzley BS, et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. AJP 2022 ; 179 : 132–41. [CrossRef] [PubMed] [Google Scholar]
- Talou J, Sayous R, Bouaziz N, et al. Mondor-stim: an open-source pipeline to optimize the target for transcranial magnetic stimulation, based on fMRI Functional connectivity. 2024 ; 10.5281/zenodo.13170889. [Google Scholar]
- Morriss R, Briley PM, Webster L, et al. Connectivity-guided intermittent theta burst versus repetitive transcranial magnetic stimulation for treatment-resistant depression: a randomized controlled trial. Nat Med 2024 ; 30 : 403–13. [CrossRef] [PubMed] [Google Scholar]
- Hoffman RE, Boutros NN, Hu S, et al. Transcranial magnetic stimulation and auditory hallucinations in schizophrenia. Lancet 2000 ; 355 : 1073–5. [CrossRef] [PubMed] [Google Scholar]
- Demeulemeester M, Amad A, Bubrovszky M, et al. What is the real effect of 1-Hz repetitive transcranial magnetic stimulation on hallucinations? Controlling for publication bias in neuromodulation trials. Biol Psychiatry 2012 ; 71 : e15–6. [CrossRef] [PubMed] [Google Scholar]
- Amad A, Jardri R, Rousseau C, et al. Excess significance sias in repetitive transcranial magnetic stimulation literature for neuropsychiatric disorders. Psychother Psychosom 2019 ; 1–8. [Google Scholar]
- Plaze M, Paillère-Martinot ML, Penttilä J, et al. “Where do auditory hallucinations come from?” - A brain morphometry study of schizophrenia patients with inner or outer space hallucinations. Schizophr Bull 2011 ; 37 : 212–21. [CrossRef] [PubMed] [Google Scholar]
- Saxe R, Brett M, Kanwisher N. Divide and conquer: a defense of functional localizers. Neuroimage 2006 ; 30 : 1088–1096 ; discussion 1097-9. [CrossRef] [PubMed] [Google Scholar]
- Jardri R, Thomas P, Delmaire C, et al. The neurodynamic organization of modality-dependent hallucinations. Cereb Cortex 2013 ; 23 : 1108–17. [CrossRef] [PubMed] [Google Scholar]
- Jardri R, Pouchet A, Pins D, et al. Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry 2011 ; 168 : 73–81. [CrossRef] [PubMed] [Google Scholar]
- Sommer IEC, Diederen KMJ, Blom JD, et al. Auditory verbal hallucinations predominantly activate the right inferior frontal area. Brain 2008 ; 131 : 3169–77. [CrossRef] [PubMed] [Google Scholar]
- Gill K, Percival C, Roes M, et al. Real-time symptom capture of hallucinations in schizophrenia with fMRI: absence of duration-dependent activity. Schizophr Bull Open 2022 ; sgac050. [CrossRef] [PubMed] [Google Scholar]
- Leroy A, Foucher JR, Pins D, et al. fMRI capture of auditory hallucinations: validation of the two-steps method. Hum Brain Mapp 2017 ; 38 : 4966–79. [CrossRef] [PubMed] [Google Scholar]
- Fovet T, Yger P, Lopes R, et al. Decoding activity in Broca’s area predicts the occurrence of auditory hallucinations across subjects. Biol Psychiatry 2022 ; 91 : 194–201. [CrossRef] [PubMed] [Google Scholar]
- Jardri R, Lucas B, Delevoye-Turrell Y, et al. An 11-year-old boy with drug-resistant schizophrenia treated with temporo-parietal rTMS. Mol Psychiatry 2007 ; 12 : 320. [CrossRef] [PubMed] [Google Scholar]
- Pindi P, Houenou J, Piguet C, et al. Real-time fMRI neurofeedback as a new treatment for psychiatric disorders: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2022 ; 119 : 110605. [CrossRef] [PubMed] [Google Scholar]
- Donantueno C, Yger P, Cabestaing F, et al. fMRI-based neurofeedback strategies and the way forward to treating phasic psychiatric symptoms. Front Neurosci 2023 ; 17 : 1275229. [CrossRef] [PubMed] [Google Scholar]
- Hardelin JP. Facteur « confondant » ou de confusion. Med Sci (Paris) 2024 ; 40 : 381. [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.