Open Access
Issue
Med Sci (Paris)
Volume 41, Number 3, Mars 2025
Page(s) 260 - 272
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025025
Published online 21 March 2025
  1. Dupuis B, Brézillon-Dubus L, Failloux AB. Les effets du changement climatique sur l’émergence de la dengue. Med Sci (Paris) 2025 ; 41 : 137–44. [Google Scholar]
  2. Guzman MG, Gubler DJ, Izquierdo A, et al. Dengue infection. Nat Rev Dis Primers 2016 ; 2 : 16055. [CrossRef] [PubMed] [Google Scholar]
  3. Dengue vaccine: WHO position paper, September 2018 - Recommendations. Vaccine 2019 ; 37 : 4848–9. [Google Scholar]
  4. Desprès P, Salmon D, Bellec L, et al. Le vaccin contre la dengue. Un défi scientifique majeur et un enjeu de santé publique. Med Sci (Paris) 2024 ; 40; 737–47 [Google Scholar]
  5. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Geneva : World Health Organization, 2009. [Google Scholar]
  6. Harapan H, Michie A, Sasmono RT, et al. Dengue: A Minireview. Viruses 2020 ; 12 : 829. [Google Scholar]
  7. Correction for Messer et al. Dengue virus envelope protein domain I/II hinge determines long-lived serotype-specific dengue immunity Proc Natl Acad Sci USA 2014 ; 111 : 6115. [Google Scholar]
  8. Khan MB, Yang ZS, Lin CY, et al. Dengue overview: An updated systemic review. J Infect Publ Health 2023 ; 16 : 1625–42. [Google Scholar]
  9. Meier R, Helenius A, Lozach PY. DC-SIGN, un récepteur des phlébovirus : dynamique des interactions virus-récepteur. Med Sci (Paris) 2012 ; 28 : 16–8. [Google Scholar]
  10. Sarker A, Dhama N, Gupta RD. Dengue virus neutralizing antibody: a review of targets, cross-reactivity, and antibody-dependent enhancement. Front Immunol 2023 ; 14. 1200195. [CrossRef] [PubMed] [Google Scholar]
  11. Green S, Rothman A. Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Curr Opin Infect Dis 2006 ; 19 : 429–36. [Google Scholar]
  12. Paz-Bailey G, Adams LE, Deen J, et al. Dengue. Lancet 2024 ; 403 : 667–82. [CrossRef] [PubMed] [Google Scholar]
  13. Bhatt P, Sabeena SP, Varma M, et al. Current understanding of the pathogenesis of dengue virus infection. Curr Microbiol 2021 ; 78 : 17–32. [Google Scholar]
  14. Goncalvez AP, Engle RE, St Claire M, et al. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci USA 2007 ; 104 : 9422–7. [Google Scholar]
  15. Kaptein SJ, Neyts J. Towards antiviral therapies for treating dengue virus infections. Curr Opin Pharmacol 2016 ; 30 : 1–7. [Google Scholar]
  16. Chan CY, Ooi EE. Dengue: An Update on Treatment Options. Future Microbiol 2015 ; 10 : 2017–31. [Google Scholar]
  17. Panya A, Bangphoomi K, Choowongkomon K, et al. Peptide inhibitors against Dengue virus infection. Chem Biol Drug Design 2014 ; 84 : 148–57. [Google Scholar]
  18. Hrobowski YM, Garry RF, Michael SF. Peptide inhibitors of dengue virus and West Nile virus infectivity. Virology 2005 ; 2 : 49. [Google Scholar]
  19. Faustino AF, Guerra GM, Huber RG, et al. Understanding Dengue virus capsid protein disordered n-terminus and pep14-23-based inhibition. ACS Chem Biol 2015 ; 10 : 517–26. [Google Scholar]
  20. Smith JL, Sheridan K, Parkins CJ, et al. Characterization and structure-activity relationship analysis of a class of antiviral compounds that directly bind dengue virus capsid protein and are incorporated into virions. Antiviral Res 2018 ; 155 : 12–9. [PubMed] [Google Scholar]
  21. Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B–NS3 protease–helicase as a target for antiviral drug development. Antiviral Res 2015 ; 118 : 148–58. [PubMed] [Google Scholar]
  22. Mastrangelo E, Pezzullo M, De Burghgraeve T, et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother 2012 ; 67 : 1884–94. [Google Scholar]
  23. Basavannacharya C, Vasudevan SG. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem Biophys Res Commun 2014 ; 453 : 539–44. [Google Scholar]
  24. Noble CG, Chen YL, Dong H, et al. Strategies for development of dengue virus inhibitors. Antiviral Res 2010 ; 85 : 450–62. [PubMed] [Google Scholar]
  25. Muñoz-Jordán JL, Sánchez-Burgos GG, Laurent-Rolle M, et al. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 2003 ; 100 : 14333–8. [Google Scholar]
  26. Zmurko J, Neyts J, Dallmeier K. Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Rev Med Virol 2015 ; 25 : 205–23. [Google Scholar]
  27. Cleef KWR van, Overheul GJ, Thomassen MC, et al. Escape mutations in NS4B render dengue virus insensitive to the antiviral activity of the paracetamol metabolite AM404. Antimicrob Agents Chemother 2016 ; 60 : 2554–7. [PubMed] [Google Scholar]
  28. Moquin SA, Simon O, Karuna R, et al. NITD-688, a pan-serotype inhibitor of the dengue virus NS4B protein, shows favorable pharmacokinetics and efficacy in preclinical animal models. Sci Trans Med 2021 ; 13 : eabb2181. [Google Scholar]
  29. Xie X, Wang QY, Xu HY, et al. Inhibition of Dengue virus by targeting viral NS4B protein. J Virol 2011 ; 85 : 11183–95. [Google Scholar]
  30. Goethals O, Kaptein SJF, Kesteleyn B, et al. Blocking NS3–NS4B interaction inhibits dengue virus in non-human primates. Nature 2023 ; 615 : 678–86. [CrossRef] [PubMed] [Google Scholar]
  31. Kaptein SJF, Goethals O, Kiemel D, et al. A pan-serotype dengue virus inhibitor targeting the NS3–NS4B interaction. Nature 2021 ; 598 : 504–9. [Google Scholar]
  32. Liu T, Sun Q, Gu J, et al. Characterization of the tenofovir resistance-associated mutations in the hepatitis B virus isolates across genotypes A to D. Antiviral Res 2022 ; 203 : 105348. [PubMed] [Google Scholar]
  33. Panya A, Songprakhon P, Panwong S, et al. Cordycepin Inhibits Virus Replication in Dengue Virus-Infected Vero Cells. Molecules 2021 ; 26 : 3118. [Google Scholar]
  34. Lim SP, Noble CG, Shi P-Y. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res 2015 ; 119 : 57–67. [PubMed] [Google Scholar]
  35. Yang SNY, Maher B, Wang C, et al. High throughput screening targeting the dengue NS3-NS5 interface identifies antivirals against Dengue, Zika and West Nile viruses. Cells 2022 ; 11 : 730. [Google Scholar]
  36. Jordheim LP, Durantel D, Zoulim F, et al. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 2013 ; 12 : 447–64. [Google Scholar]
  37. Yap TL, Xu T, Chen YL, et al. Crystal Structure of the Dengue Virus RNA-Dependent RNA Polymerase Catalytic Domain at 1.85-Angstrom Resolution. J Virol 2007 ; 81 : 4753–4765. [Google Scholar]
  38. Aspden JL, Jackson RJ. Differential effects of nucleotide analogs on scanning-dependent initiation and elongation of mammalian mRNA translation in vitro. RNA 2010 ; 16 : 1130–7. [Google Scholar]
  39. Koczor CA, Torres RA, Lewis W. The role of transporters in the toxicity of nucleoside and nucleotide analogs. Expert Opin Drug Metab Toxicol 2012 ; 8 : 665–76. [Google Scholar]
  40. Brinkman K, Hofstede HJ ter, Burger DM, et al. Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. AIDS 1998 ; 12 : 1735–44. [PubMed] [Google Scholar]
  41. Noble CG, Lim SP, Chen YL, et al. Conformational Flexibility of the Dengue Virus RNA-Dependent RNA Polymerase Revealed by a Complex with an Inhibitor. J Virol 2013 ; 87 : 5291–5. [Google Scholar]
  42. Yokokawa F, Nilar S, Noble CG, et al. Discovery of potent non-nucleoside inhibitors of dengue viral RNA-dependent RNA polymerase from a fragment hit using structure-based drug design. J Med Chem 2016 ; 59 : 3935–52. [Google Scholar]
  43. DeRoeck D, Deen J, Clemens JD. Policymakers’ views on dengue fever/dengue haemorrhagic fever and the need for dengue vaccines in four southeast Asian countries. Vaccine 2003 ; 22 : 121–9. [Google Scholar]
  44. Wahala WMPB, De Silva AM. The human antibody response to dengue virus infection. Viruses 2011 ; 3 : 2374–95. [Google Scholar]
  45. Guzman MG, Vazquez S. The Complexity of Antibody-Dependent Enhancement of Dengue Virus Infection. Viruses 2010 ; 2 : 2649–62. [Google Scholar]
  46. Putnak R, Barvir DA, Burrous JM, et al. Development of a purified, inactivated, dengue-2 virus vaccine prototype in vero cells: immunogenicity and protection in mice and rhesus monkeys. J Infect Dis 1996 ; 174 : 1176–84. [Google Scholar]
  47. Putnak R, Cassidy K, Conforti N, et al. Immunogenic and protective response in mice immunized with a purified, inactivated, Dengue-2 virus vaccine prototype made in fetal rhesus lung cells. Am J Trop Med Hyg 1996 ; 55 : 504–10. [PubMed] [Google Scholar]
  48. Robert Putnak J, Coller BA, Voss G, et al. An evaluation of dengue type-2 inactivated, recombinant subunit, and live-attenuated vaccine candidates in the rhesus macaque model. Vaccine 2005 ; 23 : 4442–52. [Google Scholar]
  49. Simmons M, Burgess T, Lynch J, et al. Protection against dengue virus by non-replicating and live attenuated vaccines used together in a prime boost vaccination strategy. Virology 2010 ; 396 : 280–8. [Google Scholar]
  50. Clements DE, Coller BAG, Lieberman MM, et al. Development of a recombinant tetravalent dengue virus vaccine: Immunogenicity and efficacy studies in mice and monkeys. Vaccine 2010 ; 28 : 2705–15. [Google Scholar]
  51. Govindarajan D, Meschino S, Guan L, et al. Preclinical development of a dengue tetravalent recombinant subunit vaccine: Immunogenicity and protective efficacy in nonhuman primates. Vaccine 2015 ; 33 : 4105–16. [Google Scholar]
  52. Shukla R, Ramasamy V, Shanmugam RK, et al. Antibody-dependent enhancement: a challenge for developing a safe Dengue vaccine. Front Cell Infect Microbiol 2020 ; 10. [PubMed] [Google Scholar]
  53. Kochel T, Wu SJ, Raviprakash K, et al. Inoculation of plasmids expressing the dengue-2 envelope gene elicit neutralizing antibodies in mice. Vaccine 1997 ; 15 : 547–52. [Google Scholar]
  54. Kochel TJ, Raviprakash K, Hayes CG, et al. A dengue virus serotype-1 DNA vaccine induces virus neutralizing antibodies and provides protection from viral challenge in Aotus monkeys. Vaccine 2000 ; 18 : 3166–73. [Google Scholar]
  55. Beckett CG, Tjaden J, Burgess T, et al. Evaluation of a prototype dengue-1 DNA vaccine in a Phase 1 clinical trial. Vaccine 2011 ; 29 : 960–8. [Google Scholar]
  56. Danko JR, Kochel T, Teneza-Mora N, et al. Safety and Immunogenicity of a Tetravalent Dengue DNA Vaccine Administered with a Cationic Lipid-Based Adjuvant in a Phase 1 Clinical Trial. The American JTrop Med Hyg 2018 ; 98 : 849–56. [Google Scholar]
  57. Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines: a new era in vaccinology. Nat Rev Drug Discov 2018 ; 17 : 261–79. [CrossRef] [PubMed] [Google Scholar]
  58. Dieu-Nosjean MC, Teillaud JL. Prix Nobel de physiologie ou médecine 2023 : Katalin Karikó et Drew Weissman - Une révolution vaccinale portée par la recherche fondamentale en immunologie et en biologie moléculaire. Med Sci (Paris) 2024 ; 40 : 186–91. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  59. Kim J, Eygeris Y, Gupta M, et al. Self-assembled mRNA vaccines. Adv Drug Deliv Rev 2021 ; 170 : 83–112. [Google Scholar]
  60. Pitard B, Pitard I. « ReNAissance » des biothérapies par ARN. Med Sci (Paris) 2024 ; 40 : 525–33. [Google Scholar]
  61. Roth C, Cantaert T, Colas C, et al. A Modified mRNA Vaccine Targeting Immunodominant NS Epitopes Protects Against Dengue Virus Infection in HLA Class I Transgenic Mice. Front Immunol 2019 ; 10 : 1424. [Google Scholar]
  62. Wollner CJ, Richner M, Hassert MA, et al. A Dengue Virus Serotype 1 mRNA-LNP Vaccine Elicits Protective Immune Responses. J Virol 2021 ; 95 : e02482–20. [Google Scholar]
  63. Chen JM, Fan YC, Lin JW, et al. Bovine Lactoferrin Inhibits Dengue Virus Infectivity by Interacting with Heparan Sulfate, Low-Density Lipoprotein Receptor, and DC-SIGN. Int J Mol Sci 2017 ; 18 : 1957. [Google Scholar]
  64. Alen MMF, Burghgraeve TD, Kaptein SJF, et al. Broad Antiviral Activity of Carbohydrate-Binding Agents against the Four Serotypes of Dengue Virus in Monocyte-Derived Dendritic Cells. PLoS One 2011 ; 6 : e21658. [Google Scholar]
  65. Cui X, Wu Y, Fan D, et al. Peptides P4 and P7 derived from E protein inhibit entry of dengue virus serotype 2 via interacting with b3 integrin. Antiviral Res 2018 ; 155 : 20–7. [PubMed] [Google Scholar]
  66. Pujol CA, Ray S, Ray B, et al. Antiviral activity against dengue virus of diverse classes of algal sulfated polysaccharides. Int J Biol Macromol 2012 ; 51 : 412–6. [Google Scholar]
  67. Recalde-Reyes DP, Rodríguez-Salazar CA, Castaño-Osorio JC, et al. PD1 CD44 antiviral peptide as an inhibitor of the protein-protein interaction in dengue virus invasion. Peptides 2022 ; 153 : 170797. [Google Scholar]
  68. Panya A, Sawasdee N, Junking M, et al. A peptide inhibitor derived from the conserved ectodomain region of DENV membrane (M) protein with activity against Dengue virus infection. Chem Biol Drug Design 2015 ; 86 : 1093–104. [Google Scholar]
  69. Poh MK, Yip A, Zhang S, et al. A small molecule fusion inhibitor of dengue virus. Antiviral Res 2009 ; 84 : 260–6. [PubMed] [Google Scholar]
  70. Kampmann T, Yennamalli R, Campbell P, et al. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res 2009 ; 84 : 234–41. [PubMed] [Google Scholar]
  71. Wang QY, Patel SJ, Vangrevelinghe E, et al. A small-molecule Dengue virus entry inhibitor. Antimicrob Agents Chemother 2009 ; 53 : 1823–31. [PubMed] [Google Scholar]
  72. Abdul Ahmad SA, Palanisamy UD, Khoo JJ, et al. Efficacy of geraniin on dengue virus type-2 infected BALB/c mice. Virology 2019 ; 16 : 26. [Google Scholar]
  73. Byrd CM, Grosenbach DW, Berhanu A, et al. Novel Benzoxazole Inhibitor of Dengue Virus Replication That Targets the NS3 Helicase. Antimicrob Agents Chemother 2013 ; 57 : 1902–12. [PubMed] [Google Scholar]
  74. Rothan HA, Abdulrahman AY, Sasikumer PG, et al. Protegrin-1 Inhibits Dengue NS2B-NS3 Serine Protease and Viral Replication in MK2 Cells. BioMed Res Int 2012 ; 2012 : 251482. [Google Scholar]
  75. Rothan HA, Han HC, Ramasamy TS, et al. Inhibition of dengue NS2B-NS3 protease and viral replication in Vero cells by recombinant retrocyclin-1. BMC Infect Dis 2012 ; 12 : 314. [Google Scholar]
  76. Bhakat S, Delang L, Kaptein S, et al. Reaching beyond HIV/HCV: nelfinavir as a potential starting point for broad-spectrum protease inhibitors against dengue and chikungunya virus. RSC Adv 2015 ; 5 : 85938–49. [Google Scholar]
  77. Cregar-Hernandez L, Jiao GS, Johnson AT, et al. Small Molecule Pan-Dengue and West Nile Virus NS3 Protease Inhibitors. Antivir Chem Chemother 2011 ; 21 : 209–17. [PubMed] [Google Scholar]
  78. Wang QY, Dong H, Zou B, et al. Discovery of Dengue Virus NS4B Inhibitors. J Virol 2015 ; 89 : 8233–44. [Google Scholar]
  79. Tarantino D, Cannalire R, Mastrangelo E, et al. Targeting flavivirus RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor. Antiviral Res 2016 ; 134 : 226–35. [PubMed] [Google Scholar]
  80. Lim SP, Noble CG, Seh CC, et al. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling. PLoS Pathog 2016 ; 12 : e1005737. [Google Scholar]
  81. Yin Z, Chen YL, Schul W, et al. An adenosine nucleoside inhibitor of dengue virus. Proc Natl Acad Sci USA 2009 ; 106 : 20435–39. [Google Scholar]
  82. Nguyen NM, Tran CNB, Phung LK, et al. A Randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult Dengue patients. J Infect Dis 2013 ; 207 : 1442–50. [Google Scholar]
  83. Diaz C, Koren M, Lin L, et al. Safety and immunogenicity of different formulations of a tetravalent Dengue purified inactivated vaccine in healthy adults from puerto rico: final results after 3 years of follow-up from a randomized, placebo-controlled phase i study. Am J Trop Med Hyg 2020 ; 102 : 951–4. [PubMed] [Google Scholar]
  84. Schmidt AC, Lin L, Martinez LJ, et al. Phase 1 randomized study of a tetravalent Dengue purified inactivated vaccine in healthy adults in the United States. Am J Trop Med Hyg 2017 ; 96 : 1325–37. [PubMed] [Google Scholar]
  85. Coller BAG, Clements DE, Bett AJ, et al. The development of recombinant subunit envelope-based vaccines to protect against dengue virus induced disease. Vaccine 2011 ; 29 : 7267–75. [Google Scholar]
  86. Manoff SB, Sausser M, Falk Russell A, et al. Immunogenicity and safety of an investigational tetravalent recombinant subunit vaccine for dengue: results of a Phase I randomized clinical trial in flavivirus-naïve adults. Hum Vaccines Immunother 2019 ; 15 : 2195–204. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.