Open Access
Numéro
Med Sci (Paris)
Volume 41, Numéro 3, Mars 2025
Page(s) 260 - 272
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025025
Publié en ligne 21 mars 2025
  1. Dupuis B, Brézillon-Dubus L, Failloux AB. Les effets du changement climatique sur l’émergence de la dengue. Med Sci (Paris) 2025 ; 41 : 137–44. [Google Scholar]
  2. Guzman MG, Gubler DJ, Izquierdo A, et al. Dengue infection. Nat Rev Dis Primers 2016 ; 2 : 16055. [CrossRef] [PubMed] [Google Scholar]
  3. Dengue vaccine: WHO position paper, September 2018 - Recommendations. Vaccine 2019 ; 37 : 4848–9. [Google Scholar]
  4. Desprès P, Salmon D, Bellec L, et al. Le vaccin contre la dengue. Un défi scientifique majeur et un enjeu de santé publique. Med Sci (Paris) 2024 ; 40; 737–47 [Google Scholar]
  5. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Geneva : World Health Organization, 2009. [Google Scholar]
  6. Harapan H, Michie A, Sasmono RT, et al. Dengue: A Minireview. Viruses 2020 ; 12 : 829. [Google Scholar]
  7. Correction for Messer et al. Dengue virus envelope protein domain I/II hinge determines long-lived serotype-specific dengue immunity Proc Natl Acad Sci USA 2014 ; 111 : 6115. [Google Scholar]
  8. Khan MB, Yang ZS, Lin CY, et al. Dengue overview: An updated systemic review. J Infect Publ Health 2023 ; 16 : 1625–42. [Google Scholar]
  9. Meier R, Helenius A, Lozach PY. DC-SIGN, un récepteur des phlébovirus : dynamique des interactions virus-récepteur. Med Sci (Paris) 2012 ; 28 : 16–8. [Google Scholar]
  10. Sarker A, Dhama N, Gupta RD. Dengue virus neutralizing antibody: a review of targets, cross-reactivity, and antibody-dependent enhancement. Front Immunol 2023 ; 14. 1200195. [CrossRef] [PubMed] [Google Scholar]
  11. Green S, Rothman A. Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Curr Opin Infect Dis 2006 ; 19 : 429–36. [Google Scholar]
  12. Paz-Bailey G, Adams LE, Deen J, et al. Dengue. Lancet 2024 ; 403 : 667–82. [CrossRef] [PubMed] [Google Scholar]
  13. Bhatt P, Sabeena SP, Varma M, et al. Current understanding of the pathogenesis of dengue virus infection. Curr Microbiol 2021 ; 78 : 17–32. [Google Scholar]
  14. Goncalvez AP, Engle RE, St Claire M, et al. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci USA 2007 ; 104 : 9422–7. [Google Scholar]
  15. Kaptein SJ, Neyts J. Towards antiviral therapies for treating dengue virus infections. Curr Opin Pharmacol 2016 ; 30 : 1–7. [Google Scholar]
  16. Chan CY, Ooi EE. Dengue: An Update on Treatment Options. Future Microbiol 2015 ; 10 : 2017–31. [Google Scholar]
  17. Panya A, Bangphoomi K, Choowongkomon K, et al. Peptide inhibitors against Dengue virus infection. Chem Biol Drug Design 2014 ; 84 : 148–57. [Google Scholar]
  18. Hrobowski YM, Garry RF, Michael SF. Peptide inhibitors of dengue virus and West Nile virus infectivity. Virology 2005 ; 2 : 49. [Google Scholar]
  19. Faustino AF, Guerra GM, Huber RG, et al. Understanding Dengue virus capsid protein disordered n-terminus and pep14-23-based inhibition. ACS Chem Biol 2015 ; 10 : 517–26. [Google Scholar]
  20. Smith JL, Sheridan K, Parkins CJ, et al. Characterization and structure-activity relationship analysis of a class of antiviral compounds that directly bind dengue virus capsid protein and are incorporated into virions. Antiviral Res 2018 ; 155 : 12–9. [PubMed] [Google Scholar]
  21. Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B–NS3 protease–helicase as a target for antiviral drug development. Antiviral Res 2015 ; 118 : 148–58. [PubMed] [Google Scholar]
  22. Mastrangelo E, Pezzullo M, De Burghgraeve T, et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemother 2012 ; 67 : 1884–94. [Google Scholar]
  23. Basavannacharya C, Vasudevan SG. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem Biophys Res Commun 2014 ; 453 : 539–44. [Google Scholar]
  24. Noble CG, Chen YL, Dong H, et al. Strategies for development of dengue virus inhibitors. Antiviral Res 2010 ; 85 : 450–62. [PubMed] [Google Scholar]
  25. Muñoz-Jordán JL, Sánchez-Burgos GG, Laurent-Rolle M, et al. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 2003 ; 100 : 14333–8. [Google Scholar]
  26. Zmurko J, Neyts J, Dallmeier K. Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Rev Med Virol 2015 ; 25 : 205–23. [Google Scholar]
  27. Cleef KWR van, Overheul GJ, Thomassen MC, et al. Escape mutations in NS4B render dengue virus insensitive to the antiviral activity of the paracetamol metabolite AM404. Antimicrob Agents Chemother 2016 ; 60 : 2554–7. [PubMed] [Google Scholar]
  28. Moquin SA, Simon O, Karuna R, et al. NITD-688, a pan-serotype inhibitor of the dengue virus NS4B protein, shows favorable pharmacokinetics and efficacy in preclinical animal models. Sci Trans Med 2021 ; 13 : eabb2181. [Google Scholar]
  29. Xie X, Wang QY, Xu HY, et al. Inhibition of Dengue virus by targeting viral NS4B protein. J Virol 2011 ; 85 : 11183–95. [Google Scholar]
  30. Goethals O, Kaptein SJF, Kesteleyn B, et al. Blocking NS3–NS4B interaction inhibits dengue virus in non-human primates. Nature 2023 ; 615 : 678–86. [CrossRef] [PubMed] [Google Scholar]
  31. Kaptein SJF, Goethals O, Kiemel D, et al. A pan-serotype dengue virus inhibitor targeting the NS3–NS4B interaction. Nature 2021 ; 598 : 504–9. [Google Scholar]
  32. Liu T, Sun Q, Gu J, et al. Characterization of the tenofovir resistance-associated mutations in the hepatitis B virus isolates across genotypes A to D. Antiviral Res 2022 ; 203 : 105348. [PubMed] [Google Scholar]
  33. Panya A, Songprakhon P, Panwong S, et al. Cordycepin Inhibits Virus Replication in Dengue Virus-Infected Vero Cells. Molecules 2021 ; 26 : 3118. [Google Scholar]
  34. Lim SP, Noble CG, Shi P-Y. The dengue virus NS5 protein as a target for drug discovery. Antiviral Res 2015 ; 119 : 57–67. [PubMed] [Google Scholar]
  35. Yang SNY, Maher B, Wang C, et al. High throughput screening targeting the dengue NS3-NS5 interface identifies antivirals against Dengue, Zika and West Nile viruses. Cells 2022 ; 11 : 730. [Google Scholar]
  36. Jordheim LP, Durantel D, Zoulim F, et al. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 2013 ; 12 : 447–64. [Google Scholar]
  37. Yap TL, Xu T, Chen YL, et al. Crystal Structure of the Dengue Virus RNA-Dependent RNA Polymerase Catalytic Domain at 1.85-Angstrom Resolution. J Virol 2007 ; 81 : 4753–4765. [Google Scholar]
  38. Aspden JL, Jackson RJ. Differential effects of nucleotide analogs on scanning-dependent initiation and elongation of mammalian mRNA translation in vitro. RNA 2010 ; 16 : 1130–7. [Google Scholar]
  39. Koczor CA, Torres RA, Lewis W. The role of transporters in the toxicity of nucleoside and nucleotide analogs. Expert Opin Drug Metab Toxicol 2012 ; 8 : 665–76. [Google Scholar]
  40. Brinkman K, Hofstede HJ ter, Burger DM, et al. Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. AIDS 1998 ; 12 : 1735–44. [PubMed] [Google Scholar]
  41. Noble CG, Lim SP, Chen YL, et al. Conformational Flexibility of the Dengue Virus RNA-Dependent RNA Polymerase Revealed by a Complex with an Inhibitor. J Virol 2013 ; 87 : 5291–5. [Google Scholar]
  42. Yokokawa F, Nilar S, Noble CG, et al. Discovery of potent non-nucleoside inhibitors of dengue viral RNA-dependent RNA polymerase from a fragment hit using structure-based drug design. J Med Chem 2016 ; 59 : 3935–52. [Google Scholar]
  43. DeRoeck D, Deen J, Clemens JD. Policymakers’ views on dengue fever/dengue haemorrhagic fever and the need for dengue vaccines in four southeast Asian countries. Vaccine 2003 ; 22 : 121–9. [Google Scholar]
  44. Wahala WMPB, De Silva AM. The human antibody response to dengue virus infection. Viruses 2011 ; 3 : 2374–95. [Google Scholar]
  45. Guzman MG, Vazquez S. The Complexity of Antibody-Dependent Enhancement of Dengue Virus Infection. Viruses 2010 ; 2 : 2649–62. [Google Scholar]
  46. Putnak R, Barvir DA, Burrous JM, et al. Development of a purified, inactivated, dengue-2 virus vaccine prototype in vero cells: immunogenicity and protection in mice and rhesus monkeys. J Infect Dis 1996 ; 174 : 1176–84. [Google Scholar]
  47. Putnak R, Cassidy K, Conforti N, et al. Immunogenic and protective response in mice immunized with a purified, inactivated, Dengue-2 virus vaccine prototype made in fetal rhesus lung cells. Am J Trop Med Hyg 1996 ; 55 : 504–10. [PubMed] [Google Scholar]
  48. Robert Putnak J, Coller BA, Voss G, et al. An evaluation of dengue type-2 inactivated, recombinant subunit, and live-attenuated vaccine candidates in the rhesus macaque model. Vaccine 2005 ; 23 : 4442–52. [Google Scholar]
  49. Simmons M, Burgess T, Lynch J, et al. Protection against dengue virus by non-replicating and live attenuated vaccines used together in a prime boost vaccination strategy. Virology 2010 ; 396 : 280–8. [Google Scholar]
  50. Clements DE, Coller BAG, Lieberman MM, et al. Development of a recombinant tetravalent dengue virus vaccine: Immunogenicity and efficacy studies in mice and monkeys. Vaccine 2010 ; 28 : 2705–15. [Google Scholar]
  51. Govindarajan D, Meschino S, Guan L, et al. Preclinical development of a dengue tetravalent recombinant subunit vaccine: Immunogenicity and protective efficacy in nonhuman primates. Vaccine 2015 ; 33 : 4105–16. [Google Scholar]
  52. Shukla R, Ramasamy V, Shanmugam RK, et al. Antibody-dependent enhancement: a challenge for developing a safe Dengue vaccine. Front Cell Infect Microbiol 2020 ; 10. [PubMed] [Google Scholar]
  53. Kochel T, Wu SJ, Raviprakash K, et al. Inoculation of plasmids expressing the dengue-2 envelope gene elicit neutralizing antibodies in mice. Vaccine 1997 ; 15 : 547–52. [Google Scholar]
  54. Kochel TJ, Raviprakash K, Hayes CG, et al. A dengue virus serotype-1 DNA vaccine induces virus neutralizing antibodies and provides protection from viral challenge in Aotus monkeys. Vaccine 2000 ; 18 : 3166–73. [Google Scholar]
  55. Beckett CG, Tjaden J, Burgess T, et al. Evaluation of a prototype dengue-1 DNA vaccine in a Phase 1 clinical trial. Vaccine 2011 ; 29 : 960–8. [Google Scholar]
  56. Danko JR, Kochel T, Teneza-Mora N, et al. Safety and Immunogenicity of a Tetravalent Dengue DNA Vaccine Administered with a Cationic Lipid-Based Adjuvant in a Phase 1 Clinical Trial. The American JTrop Med Hyg 2018 ; 98 : 849–56. [Google Scholar]
  57. Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines: a new era in vaccinology. Nat Rev Drug Discov 2018 ; 17 : 261–79. [CrossRef] [PubMed] [Google Scholar]
  58. Dieu-Nosjean MC, Teillaud JL. Prix Nobel de physiologie ou médecine 2023 : Katalin Karikó et Drew Weissman - Une révolution vaccinale portée par la recherche fondamentale en immunologie et en biologie moléculaire. Med Sci (Paris) 2024 ; 40 : 186–91. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  59. Kim J, Eygeris Y, Gupta M, et al. Self-assembled mRNA vaccines. Adv Drug Deliv Rev 2021 ; 170 : 83–112. [Google Scholar]
  60. Pitard B, Pitard I. « ReNAissance » des biothérapies par ARN. Med Sci (Paris) 2024 ; 40 : 525–33. [Google Scholar]
  61. Roth C, Cantaert T, Colas C, et al. A Modified mRNA Vaccine Targeting Immunodominant NS Epitopes Protects Against Dengue Virus Infection in HLA Class I Transgenic Mice. Front Immunol 2019 ; 10 : 1424. [Google Scholar]
  62. Wollner CJ, Richner M, Hassert MA, et al. A Dengue Virus Serotype 1 mRNA-LNP Vaccine Elicits Protective Immune Responses. J Virol 2021 ; 95 : e02482–20. [Google Scholar]
  63. Chen JM, Fan YC, Lin JW, et al. Bovine Lactoferrin Inhibits Dengue Virus Infectivity by Interacting with Heparan Sulfate, Low-Density Lipoprotein Receptor, and DC-SIGN. Int J Mol Sci 2017 ; 18 : 1957. [Google Scholar]
  64. Alen MMF, Burghgraeve TD, Kaptein SJF, et al. Broad Antiviral Activity of Carbohydrate-Binding Agents against the Four Serotypes of Dengue Virus in Monocyte-Derived Dendritic Cells. PLoS One 2011 ; 6 : e21658. [Google Scholar]
  65. Cui X, Wu Y, Fan D, et al. Peptides P4 and P7 derived from E protein inhibit entry of dengue virus serotype 2 via interacting with b3 integrin. Antiviral Res 2018 ; 155 : 20–7. [PubMed] [Google Scholar]
  66. Pujol CA, Ray S, Ray B, et al. Antiviral activity against dengue virus of diverse classes of algal sulfated polysaccharides. Int J Biol Macromol 2012 ; 51 : 412–6. [Google Scholar]
  67. Recalde-Reyes DP, Rodríguez-Salazar CA, Castaño-Osorio JC, et al. PD1 CD44 antiviral peptide as an inhibitor of the protein-protein interaction in dengue virus invasion. Peptides 2022 ; 153 : 170797. [Google Scholar]
  68. Panya A, Sawasdee N, Junking M, et al. A peptide inhibitor derived from the conserved ectodomain region of DENV membrane (M) protein with activity against Dengue virus infection. Chem Biol Drug Design 2015 ; 86 : 1093–104. [Google Scholar]
  69. Poh MK, Yip A, Zhang S, et al. A small molecule fusion inhibitor of dengue virus. Antiviral Res 2009 ; 84 : 260–6. [PubMed] [Google Scholar]
  70. Kampmann T, Yennamalli R, Campbell P, et al. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res 2009 ; 84 : 234–41. [PubMed] [Google Scholar]
  71. Wang QY, Patel SJ, Vangrevelinghe E, et al. A small-molecule Dengue virus entry inhibitor. Antimicrob Agents Chemother 2009 ; 53 : 1823–31. [PubMed] [Google Scholar]
  72. Abdul Ahmad SA, Palanisamy UD, Khoo JJ, et al. Efficacy of geraniin on dengue virus type-2 infected BALB/c mice. Virology 2019 ; 16 : 26. [Google Scholar]
  73. Byrd CM, Grosenbach DW, Berhanu A, et al. Novel Benzoxazole Inhibitor of Dengue Virus Replication That Targets the NS3 Helicase. Antimicrob Agents Chemother 2013 ; 57 : 1902–12. [PubMed] [Google Scholar]
  74. Rothan HA, Abdulrahman AY, Sasikumer PG, et al. Protegrin-1 Inhibits Dengue NS2B-NS3 Serine Protease and Viral Replication in MK2 Cells. BioMed Res Int 2012 ; 2012 : 251482. [Google Scholar]
  75. Rothan HA, Han HC, Ramasamy TS, et al. Inhibition of dengue NS2B-NS3 protease and viral replication in Vero cells by recombinant retrocyclin-1. BMC Infect Dis 2012 ; 12 : 314. [Google Scholar]
  76. Bhakat S, Delang L, Kaptein S, et al. Reaching beyond HIV/HCV: nelfinavir as a potential starting point for broad-spectrum protease inhibitors against dengue and chikungunya virus. RSC Adv 2015 ; 5 : 85938–49. [Google Scholar]
  77. Cregar-Hernandez L, Jiao GS, Johnson AT, et al. Small Molecule Pan-Dengue and West Nile Virus NS3 Protease Inhibitors. Antivir Chem Chemother 2011 ; 21 : 209–17. [PubMed] [Google Scholar]
  78. Wang QY, Dong H, Zou B, et al. Discovery of Dengue Virus NS4B Inhibitors. J Virol 2015 ; 89 : 8233–44. [Google Scholar]
  79. Tarantino D, Cannalire R, Mastrangelo E, et al. Targeting flavivirus RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor. Antiviral Res 2016 ; 134 : 226–35. [PubMed] [Google Scholar]
  80. Lim SP, Noble CG, Seh CC, et al. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling. PLoS Pathog 2016 ; 12 : e1005737. [Google Scholar]
  81. Yin Z, Chen YL, Schul W, et al. An adenosine nucleoside inhibitor of dengue virus. Proc Natl Acad Sci USA 2009 ; 106 : 20435–39. [Google Scholar]
  82. Nguyen NM, Tran CNB, Phung LK, et al. A Randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult Dengue patients. J Infect Dis 2013 ; 207 : 1442–50. [Google Scholar]
  83. Diaz C, Koren M, Lin L, et al. Safety and immunogenicity of different formulations of a tetravalent Dengue purified inactivated vaccine in healthy adults from puerto rico: final results after 3 years of follow-up from a randomized, placebo-controlled phase i study. Am J Trop Med Hyg 2020 ; 102 : 951–4. [PubMed] [Google Scholar]
  84. Schmidt AC, Lin L, Martinez LJ, et al. Phase 1 randomized study of a tetravalent Dengue purified inactivated vaccine in healthy adults in the United States. Am J Trop Med Hyg 2017 ; 96 : 1325–37. [PubMed] [Google Scholar]
  85. Coller BAG, Clements DE, Bett AJ, et al. The development of recombinant subunit envelope-based vaccines to protect against dengue virus induced disease. Vaccine 2011 ; 29 : 7267–75. [Google Scholar]
  86. Manoff SB, Sausser M, Falk Russell A, et al. Immunogenicity and safety of an investigational tetravalent recombinant subunit vaccine for dengue: results of a Phase I randomized clinical trial in flavivirus-naïve adults. Hum Vaccines Immunother 2019 ; 15 : 2195–204. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.