Open Access
Issue |
Med Sci (Paris)
Volume 41, Number 3, Mars 2025
|
|
---|---|---|
Page(s) | 277 - 280 | |
Section | Prix Nobel | |
DOI | https://doi.org/10.1051/medsci/2025036 | |
Published online | 21 March 2025 |
- Benani A. History and vision of artificial intelligence. Med Sci (Paris) 2024 ; 40 : 283–286. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Jean A. Une brève introduction à l’intelligence artificielle. Med Sci (Paris) 2020 ; 36 : 1059–1067. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Haiech J. Parcourir l’histoire de l’intelligence artificielle, pour mieux la définir et la comprendre. Med Sci (Paris) 2020 ; 36 : 919–923. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Taly A, Verger A. Prédiction de structures biomoléculaires complexes par AlphaFold 3. Med Sci (Paris) 2024 ; 40 : 725–727. [Google Scholar]
- Hopfield JJ. Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. Physical Rev 1958 : 1555–67. [Google Scholar]
- Hopfield JJ, Tank DW. “Neural” computation of decisions in optimization problems. Biol Cybern 1985 ; 52 : 141–52. [Google Scholar]
- Nair V, Hinton GE. Rectified Linear Units Improve Restricted Boltzmann Machines. ICML’10: Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010 : 807–8. [Google Scholar]
- Ackley DH, Hinton GE, Sejnowski TJ. A Learning Algorithm for Boltzmann Machines. In : Fischler MA, Firschein O, eds. Readings in Computer Vision. San Francisco (CA) : Morgan Kaufmann, 1987 : 522–33. [Google Scholar]
- McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 1943 ; 5 : 115–33. [Google Scholar]
- Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021 ; 596 : 583–9. [CrossRef] [PubMed] [Google Scholar]
- Simonson T. Le « problème du repliement » : peut-on prédire la structure des protéines ? Med Sci (Paris) 2005 ; 21 : 609–12. [Google Scholar]
- Jordan B. AlphaFold : un pas essentiel vers la fonction des protéines. Chroniques génomiques. Med Sci (Paris) 2021 ; 37 : 197–200. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Moingeon P, Garbay C, Dahan M, et al. L’intelligence artificielle, une révolution dans le développement des médicaments. Med Sci (Paris) 2024 ; 40 : 369–76. [Google Scholar]
- Baldi P, Sadowski P, Whiteson D. Enhanced Higgs Boson to τ+τ - Search with Deep Learning. Phys Rev Lett 2015 ; 114 : 111801. [Google Scholar]
- Rajput PS. Exoplanet Detection Using Machine Learning : A Comparative Study Using Kepler Mission Data. Int J Sci Res Sci Technol. 2024 ; 11 : 43–8. [Google Scholar]
- Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 1982 ; 79 : 2554–8. [Google Scholar]
- Hopfield JJ. Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci USA 1984 ; 81 : 3088–92. [Google Scholar]
- Hopfield JJ, Tank DW. Computing with Neural Circuits: A Model. Science 1986 ; 233 : 625–33. [Google Scholar]
- Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986 ; 323 : 533–6. [CrossRef] [Google Scholar]
- Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2017 ; 60 : 84–90. [CrossRef] [Google Scholar]
- Yao L, Miller JA. Tiny ImageNet Classification with Convolutional Neural Networks. Computer Science, 2015. [Google Scholar]
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015 ; 521 : 436–44. [CrossRef] [PubMed] [Google Scholar]
- Pritchard L, Dufton MJ. Do proteins learn to evolve? The Hopfield network as a basis for the understanding of protein evolution. J Theor Biol. 2000 ; 202 : 77–86. [PubMed] [Google Scholar]
- Fard AT, Srihari S, Mar JC, et al. Not just a colourful metaphor: modelling the landscape of cellular development using Hopfield networks. NPJ Syst Biol Appl 2016 ; 2 : 16001. [Google Scholar]
- Jiang Y, Zhang Z, Wang W, et al. Biology-guided deep learning predicts prognosis and cancer immunotherapy response. Nat Commun 2023 ; 14 : 5135. [PubMed] [Google Scholar]
- Ghorbani A, Ouyang D, Abid A, et al. Deep learning interpretation of echocardiograms. Npj Digit Med 2020 ; 3 : 1–10. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.