Issue
Med Sci (Paris)
Volume 41, Number 2, Février 2025
Les microbes, l’Anthropocène et nous
Page(s) 160 - 165
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2025014
Published online 03 March 2025
  1. Carreira C, Lønborg C, Acharya B, et al. Integrating viruses into soil food web biogeochemistry. Nat Microbiol 2024 ; 9 : 1918–28. [CrossRef] [PubMed] [Google Scholar]
  2. Hardy A, Shomar H, Bernheim A. Immunité bactérienne : à la découverte d’un nouveau monde. Med Sci (Paris) 2023 ; 39 : 862–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Georjon H, Bernheim A. The highly diverse antiphage defence systems of bacteria. Nat Rev Microbiol 2023 ; 833 : 686–700. [CrossRef] [PubMed] [Google Scholar]
  4. Ansaldi M, Boulanger P, Brives C, et al. A century of research on bacteriophages. Virologie 2020 ; 24 : 9–22. [PubMed] [Google Scholar]
  5. Howard-Varona C, Hargreaves KR, Abedon ST, et al. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 2017 ; 11 : 1511–20. [CrossRef] [PubMed] [Google Scholar]
  6. Pfeifer E, Moura de Sousa JA,, et al. Bacteria have numerous distinctive groups of phage-plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res 2021 ; 49 : 2655–73. [CrossRef] [PubMed] [Google Scholar]
  7. St-Pierre F, Endy D. Determination of cell fate selection during phage lambda infection. Proc Natl Acad Sci USA 2008 ; 105 : 20705–10. [CrossRef] [PubMed] [Google Scholar]
  8. Łoś M, We˛grzyn G. Chapter 9 - Pseudolysogeny. In : Małgorzata Łobocka and Wacław T. Szybalski, eds. Ad Virus Res. Bacteriophages, Part A. New York : Academic Press, 2012 : 339–49. [Google Scholar]
  9. Hobbs Z, Abedon ST. Diversity of phage infection types and associated terminology: the problem with “Lytic or lysogenic.” FEMS Microbiol Lett 2016 ; 363. [Google Scholar]
  10. Wilhelm SW, Suttle CA. Viruses and Nutrient Cycles in the Sea: Viruses play critical roles in the structure and function of aquatic food webs. BioScience 1999 ; 49 : 781–8. [CrossRef] [Google Scholar]
  11. Barnett SE, Buckley DH. Metagenomic stable isotope probing reveals bacteriophage participation in soil carbon cycling. Environ Microbiol 2023 ; 25 : 1785–95. [CrossRef] [PubMed] [Google Scholar]
  12. Rodriguez-Valera F, Bellas C. How Viruses Shape Microbial Plankton Microdiversity. Ann Rev Mar Sci 2024. [Google Scholar]
  13. Suttle CA. Marine viruses--major players in the global ecosystem. Nat Rev Microbiol 2007 ; 5 : 801–12. [CrossRef] [PubMed] [Google Scholar]
  14. Brussaard CPD, Wilhelm SW, Thingstad F, et al. Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J 2008 ; 2 : 575–8. [CrossRef] [PubMed] [Google Scholar]
  15. Jacquet S, Baudoux AC, Desdevises Y, et al. Les virus marins: simples parasites ou acteurs majeurs des écosystèmes aquatiques? Paris : Éditions Quae, 2023. [Google Scholar]
  16. Suttle CA. Marine viruses - major players in the global ecosystem. Nat Rev Microbiol 2007 ; 5 : 801–12. [CrossRef] [PubMed] [Google Scholar]
  17. Bernheim A, Sorek R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol 2019 ; 1–7. [PubMed] [Google Scholar]
  18. Tesson F, Huiting E, Wei L, et al. Exploring the diversity of anti-defense systems across prokaryotes, phages, and mobile genetic elements. Nucleic Acids Res 2024 ; 608784. [Google Scholar]
  19. Mushegian AR. Are There 1031 Virus Particles on Earth, or More, or Fewer? J.Bacteriol 2020 ; 202 : 10.1128/jb.00052-20. [CrossRef] [PubMed] [Google Scholar]
  20. Cheng R, Li X, Jiang L, et al. Virus diversity and interactions with hosts in deep-sea hydrothermal vents. Microbiome 2022 ; 10 : 235. [CrossRef] [PubMed] [Google Scholar]
  21. Heinrichs ME, Piedade GJ, Popa O, et al. Breaking the Ice: A Review of Phages in Polar Ecosystems. Meth Mol Biol 2024 ; 2738 : 31–71. [CrossRef] [PubMed] [Google Scholar]
  22. García-López R, Pérez-Brocal V, Moya A. Beyond cells - The virome in the human holobiont. Microb Cell 2019 ; 6 : 373–96. [CrossRef] [PubMed] [Google Scholar]
  23. Ottmann M. Ces virus qui nous habitent et qui nous visitent : le virome humain. Med Sci (Paris) 2022 ; 38 : 1028–38. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Barr JJ. A bacteriophages journey through the human body. Immunol Rev 2017 ; 279 : 106–22. [CrossRef] [PubMed] [Google Scholar]
  25. Shkoporov AN, Hill C. Bacteriophages of the Human Gut: The “Known Unknown” of the Microbiome. Cell Host Microbe 2019 ; 25 : 195–209. [CrossRef] [PubMed] [Google Scholar]
  26. Zhu Y, Shang J, Peng C, et al. Phage family classification under Caudoviricetes: A review of current tools using the latest ICTV classification framework. Front Microbiol 2022 ; 13 : 1032186. [CrossRef] [PubMed] [Google Scholar]
  27. Inglis LK, Roach MJ, Edwards RA. Prophages: an integral but understudied component of the human microbiome. Microb Genome 2024 ; 10 : 001166. [Google Scholar]
  28. Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 2002 ; 68 : 3878–85. [CrossRef] [PubMed] [Google Scholar]
  29. Sutcliffe SG, Reyes A, Maurice CF. Bacteriophages playing nice: Lysogenic bacteriophage replication stable in the human gut microbiota. iScience 2023 ; 26 : 106007. [CrossRef] [PubMed] [Google Scholar]
  30. Henrot C, Petit M-A. Signals triggering prophage induction in the gut microbiota. Mol Microbiol 2022 ; 118 : 494–502. [CrossRef] [PubMed] [Google Scholar]
  31. Dutilh BE, Cassman N, McNair K, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun 2014 ; 5 : 4498. [CrossRef] [PubMed] [Google Scholar]
  32. Liang G, Bushman FD. The human virome: assembly, composition and host interactions. Nat Rev Microbiol 2021 ; 19 : 514–27. [CrossRef] [PubMed] [Google Scholar]
  33. Nayfach S, Páez-Espino D, Call L, et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol 2021 ; 6 : 960–70. [CrossRef] [PubMed] [Google Scholar]
  34. Shkoporov AN, Clooney AG, Sutton TDS, et al. The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific. Cell Host Microbe 2019 ; 26 : 527–41.e5. [CrossRef] [PubMed] [Google Scholar]
  35. Shah SA, Deng L, Thorsen J, et al. Expanding known viral diversity in the healthy infant gut. Nat Microbiol 2023 ; 8 : 986–98. [CrossRef] [PubMed] [Google Scholar]
  36. Liu Y, Tempelaars MH, Boeren S, et al. Extracellular vesicle formation in Lactococcus lactis is stimulated by prophage-encoded holin-lysin system. Microb Biotechnol 2022 ; 15 : 1281–95. [CrossRef] [PubMed] [Google Scholar]
  37. Van Belleghem JD, Dąbrowska K, Vaneechoutte M, et al. Interactions between Bacteriophage, Bacteria, and the Mammalian Immune System. Viruses 2018 ; 11 : 10. [CrossRef] [PubMed] [Google Scholar]
  38. Ansaldi M, Boulanger P, Brives C, et al. Antibacterial applications of bacteriophages. Virologie 2020 ; 24 : 23–36. [PubMed] [Google Scholar]
  39. Lemieux R. Félix d’Hérelle, trop rebelle pour le Nobel. Montréal : Éditions MultiMondes, 2019. [Google Scholar]
  40. D’Herelle F. Sur le rôle du microbe filtrant bactériophage dans la dysenterie bacillaire. CR Acad Sci Paris 1918 ; 167 : 970–2. [Google Scholar]
  41. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022 WHO. https://www.who.int/publications/i/item/9789240062702 [Google Scholar]
  42. MacNair CR, Rutherford ST, Tan MW. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat Rev Microbiol 2024 ; 22 : 262–75. [CrossRef] [PubMed] [Google Scholar]
  43. Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022 ; 399 : 629–55. [CrossRef] [PubMed] [Google Scholar]
  44. Chanishvili N, Myelnikov D, Blauvelt TK. Professor Giorgi Eliava and the Eliava Institute of Bacteriophage. Phage (New Rochelle) 2022 ; 3 : 71–80. [PubMed] [Google Scholar]
  45. Tesson F, Bernheim A. Synergy and regulation of antiphage systems: toward the existence of a bacterial immune system? Curr Opin Microbiol 2023 ; 71 : 102238. [CrossRef] [PubMed] [Google Scholar]
  46. Pirnay JP, Djebara S, Steurs G, et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat Microbiol 2024 ; 9 : 1434–53. [CrossRef] [PubMed] [Google Scholar]
  47. Benech N, Chaffringeon L, Briot T, et al. Les virus au service de la santé : les bactériophages. Med Sci (Paris) 2022 ; 38 : 1043–51. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Jordan B. Cent ans après, le retour de la phagothérapie ? - Chroniques génomiques. Med Sci (Paris) 2019 ; 35 : 806–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Bulssico J, Papukashvili I, Espinosa L, et al. Phage-antibiotic synergy: Cell filamentation is a key driver of successful phage predation. PLoS Pathog 2023 ; 19 : e1011602. [CrossRef] [PubMed] [Google Scholar]
  50. Pirnay JP, Merabishvili M, De Vos D, et al. Bacteriophage Production in Compliance with Regulatory Requirements. Meth Mol Biol 2024 ; 2734 : 89–115. [CrossRef] [PubMed] [Google Scholar]
  51. Rohde C, Resch G, Pirnay JP, et al. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains. Viruses 2018 ; 10. [PubMed] [Google Scholar]
  52. Offersen SM, Mao X, Spiegelhauer MR, et al. Fecal virus-like particles are sufficient to reduce necrotizing enterocolitis. Gut Microbes 2024 ; 16 : 2392876. [CrossRef] [PubMed] [Google Scholar]
  53. Lin RC, Sacher JC, Ceyssens PJ, et al. Phage Biobank: Present Challenges and Future Perspectives. Curr Opin Biotechnol 2021 ; 68 : 221–30. [CrossRef] [PubMed] [Google Scholar]
  54. Prigent-Combaret C, Dumas B. Biocontrol of Plant Disease: Recent Advances and Prospects in Plant Protection. New York : John Wiley, 2022 : 292. [Google Scholar]
  55. Bachy C, Baudoux AC. Diversité et importance écologique des virus dans le milieu marin. Med Sci (Paris) 2022 ; 38 : 1008–15. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  56. Bouchard C, Godbout K, Tremblay JP. La correction de mutations pathogènes par Prime editing. Med Sci (Paris) 2024 ; 40 : 748–56 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.