Open Access
Numéro |
Med Sci (Paris)
Volume 41, Numéro 2, Février 2025
Les microbes, l’Anthropocène et nous
|
|
---|---|---|
Page(s) | 160 - 165 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2025014 | |
Publié en ligne | 3 mars 2025 |
- Carreira C, Lønborg C, Acharya B, et al. Integrating viruses into soil food web biogeochemistry. Nat Microbiol 2024 ; 9 : 1918–28. [CrossRef] [PubMed] [Google Scholar]
- Hardy A, Shomar H, Bernheim A. Immunité bactérienne : à la découverte d’un nouveau monde. Med Sci (Paris) 2023 ; 39 : 862–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Georjon H, Bernheim A. The highly diverse antiphage defence systems of bacteria. Nat Rev Microbiol 2023 ; 833 : 686–700. [CrossRef] [PubMed] [Google Scholar]
- Ansaldi M, Boulanger P, Brives C, et al. A century of research on bacteriophages. Virologie 2020 ; 24 : 9–22. [PubMed] [Google Scholar]
- Howard-Varona C, Hargreaves KR, Abedon ST, et al. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 2017 ; 11 : 1511–20. [CrossRef] [PubMed] [Google Scholar]
- Pfeifer E, Moura de Sousa JA,, et al. Bacteria have numerous distinctive groups of phage-plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res 2021 ; 49 : 2655–73. [CrossRef] [PubMed] [Google Scholar]
- St-Pierre F, Endy D. Determination of cell fate selection during phage lambda infection. Proc Natl Acad Sci USA 2008 ; 105 : 20705–10. [CrossRef] [PubMed] [Google Scholar]
- Łoś M, We˛grzyn G. Chapter 9 - Pseudolysogeny. In : Małgorzata Łobocka and Wacław T. Szybalski, eds. Ad Virus Res. Bacteriophages, Part A. New York : Academic Press, 2012 : 339–49. [Google Scholar]
- Hobbs Z, Abedon ST. Diversity of phage infection types and associated terminology: the problem with “Lytic or lysogenic.” FEMS Microbiol Lett 2016 ; 363. [Google Scholar]
- Wilhelm SW, Suttle CA. Viruses and Nutrient Cycles in the Sea: Viruses play critical roles in the structure and function of aquatic food webs. BioScience 1999 ; 49 : 781–8. [CrossRef] [Google Scholar]
- Barnett SE, Buckley DH. Metagenomic stable isotope probing reveals bacteriophage participation in soil carbon cycling. Environ Microbiol 2023 ; 25 : 1785–95. [CrossRef] [PubMed] [Google Scholar]
- Rodriguez-Valera F, Bellas C. How Viruses Shape Microbial Plankton Microdiversity. Ann Rev Mar Sci 2024. [Google Scholar]
- Suttle CA. Marine viruses--major players in the global ecosystem. Nat Rev Microbiol 2007 ; 5 : 801–12. [CrossRef] [PubMed] [Google Scholar]
- Brussaard CPD, Wilhelm SW, Thingstad F, et al. Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J 2008 ; 2 : 575–8. [CrossRef] [PubMed] [Google Scholar]
- Jacquet S, Baudoux AC, Desdevises Y, et al. Les virus marins: simples parasites ou acteurs majeurs des écosystèmes aquatiques? Paris : Éditions Quae, 2023. [Google Scholar]
- Suttle CA. Marine viruses - major players in the global ecosystem. Nat Rev Microbiol 2007 ; 5 : 801–12. [CrossRef] [PubMed] [Google Scholar]
- Bernheim A, Sorek R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol 2019 ; 1–7. [PubMed] [Google Scholar]
- Tesson F, Huiting E, Wei L, et al. Exploring the diversity of anti-defense systems across prokaryotes, phages, and mobile genetic elements. Nucleic Acids Res 2024 ; 608784. [Google Scholar]
- Mushegian AR. Are There 1031 Virus Particles on Earth, or More, or Fewer? J.Bacteriol 2020 ; 202 : 10.1128/jb.00052-20. [CrossRef] [PubMed] [Google Scholar]
- Cheng R, Li X, Jiang L, et al. Virus diversity and interactions with hosts in deep-sea hydrothermal vents. Microbiome 2022 ; 10 : 235. [CrossRef] [PubMed] [Google Scholar]
- Heinrichs ME, Piedade GJ, Popa O, et al. Breaking the Ice: A Review of Phages in Polar Ecosystems. Meth Mol Biol 2024 ; 2738 : 31–71. [CrossRef] [PubMed] [Google Scholar]
- García-López R, Pérez-Brocal V, Moya A. Beyond cells - The virome in the human holobiont. Microb Cell 2019 ; 6 : 373–96. [CrossRef] [PubMed] [Google Scholar]
- Ottmann M. Ces virus qui nous habitent et qui nous visitent : le virome humain. Med Sci (Paris) 2022 ; 38 : 1028–38. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Barr JJ. A bacteriophages journey through the human body. Immunol Rev 2017 ; 279 : 106–22. [CrossRef] [PubMed] [Google Scholar]
- Shkoporov AN, Hill C. Bacteriophages of the Human Gut: The “Known Unknown” of the Microbiome. Cell Host Microbe 2019 ; 25 : 195–209. [CrossRef] [PubMed] [Google Scholar]
- Zhu Y, Shang J, Peng C, et al. Phage family classification under Caudoviricetes: A review of current tools using the latest ICTV classification framework. Front Microbiol 2022 ; 13 : 1032186. [CrossRef] [PubMed] [Google Scholar]
- Inglis LK, Roach MJ, Edwards RA. Prophages: an integral but understudied component of the human microbiome. Microb Genome 2024 ; 10 : 001166. [Google Scholar]
- Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 2002 ; 68 : 3878–85. [CrossRef] [PubMed] [Google Scholar]
- Sutcliffe SG, Reyes A, Maurice CF. Bacteriophages playing nice: Lysogenic bacteriophage replication stable in the human gut microbiota. iScience 2023 ; 26 : 106007. [CrossRef] [PubMed] [Google Scholar]
- Henrot C, Petit M-A. Signals triggering prophage induction in the gut microbiota. Mol Microbiol 2022 ; 118 : 494–502. [CrossRef] [PubMed] [Google Scholar]
- Dutilh BE, Cassman N, McNair K, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun 2014 ; 5 : 4498. [CrossRef] [PubMed] [Google Scholar]
- Liang G, Bushman FD. The human virome: assembly, composition and host interactions. Nat Rev Microbiol 2021 ; 19 : 514–27. [CrossRef] [PubMed] [Google Scholar]
- Nayfach S, Páez-Espino D, Call L, et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol 2021 ; 6 : 960–70. [CrossRef] [PubMed] [Google Scholar]
- Shkoporov AN, Clooney AG, Sutton TDS, et al. The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific. Cell Host Microbe 2019 ; 26 : 527–41.e5. [CrossRef] [PubMed] [Google Scholar]
- Shah SA, Deng L, Thorsen J, et al. Expanding known viral diversity in the healthy infant gut. Nat Microbiol 2023 ; 8 : 986–98. [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Tempelaars MH, Boeren S, et al. Extracellular vesicle formation in Lactococcus lactis is stimulated by prophage-encoded holin-lysin system. Microb Biotechnol 2022 ; 15 : 1281–95. [CrossRef] [PubMed] [Google Scholar]
- Van Belleghem JD, Dąbrowska K, Vaneechoutte M, et al. Interactions between Bacteriophage, Bacteria, and the Mammalian Immune System. Viruses 2018 ; 11 : 10. [CrossRef] [PubMed] [Google Scholar]
- Ansaldi M, Boulanger P, Brives C, et al. Antibacterial applications of bacteriophages. Virologie 2020 ; 24 : 23–36. [PubMed] [Google Scholar]
- Lemieux R. Félix d’Hérelle, trop rebelle pour le Nobel. Montréal : Éditions MultiMondes, 2019. [Google Scholar]
- D’Herelle F. Sur le rôle du microbe filtrant bactériophage dans la dysenterie bacillaire. CR Acad Sci Paris 1918 ; 167 : 970–2. [Google Scholar]
- Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022 WHO. https://www.who.int/publications/i/item/9789240062702 [Google Scholar]
- MacNair CR, Rutherford ST, Tan MW. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat Rev Microbiol 2024 ; 22 : 262–75. [CrossRef] [PubMed] [Google Scholar]
- Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022 ; 399 : 629–55. [CrossRef] [PubMed] [Google Scholar]
- Chanishvili N, Myelnikov D, Blauvelt TK. Professor Giorgi Eliava and the Eliava Institute of Bacteriophage. Phage (New Rochelle) 2022 ; 3 : 71–80. [PubMed] [Google Scholar]
- Tesson F, Bernheim A. Synergy and regulation of antiphage systems: toward the existence of a bacterial immune system? Curr Opin Microbiol 2023 ; 71 : 102238. [CrossRef] [PubMed] [Google Scholar]
- Pirnay JP, Djebara S, Steurs G, et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat Microbiol 2024 ; 9 : 1434–53. [CrossRef] [PubMed] [Google Scholar]
- Benech N, Chaffringeon L, Briot T, et al. Les virus au service de la santé : les bactériophages. Med Sci (Paris) 2022 ; 38 : 1043–51. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Jordan B. Cent ans après, le retour de la phagothérapie ? - Chroniques génomiques. Med Sci (Paris) 2019 ; 35 : 806–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Bulssico J, Papukashvili I, Espinosa L, et al. Phage-antibiotic synergy: Cell filamentation is a key driver of successful phage predation. PLoS Pathog 2023 ; 19 : e1011602. [CrossRef] [PubMed] [Google Scholar]
- Pirnay JP, Merabishvili M, De Vos D, et al. Bacteriophage Production in Compliance with Regulatory Requirements. Meth Mol Biol 2024 ; 2734 : 89–115. [CrossRef] [PubMed] [Google Scholar]
- Rohde C, Resch G, Pirnay JP, et al. Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains. Viruses 2018 ; 10. [PubMed] [Google Scholar]
- Offersen SM, Mao X, Spiegelhauer MR, et al. Fecal virus-like particles are sufficient to reduce necrotizing enterocolitis. Gut Microbes 2024 ; 16 : 2392876. [CrossRef] [PubMed] [Google Scholar]
- Lin RC, Sacher JC, Ceyssens PJ, et al. Phage Biobank: Present Challenges and Future Perspectives. Curr Opin Biotechnol 2021 ; 68 : 221–30. [CrossRef] [PubMed] [Google Scholar]
- Prigent-Combaret C, Dumas B. Biocontrol of Plant Disease: Recent Advances and Prospects in Plant Protection. New York : John Wiley, 2022 : 292. [Google Scholar]
- Bachy C, Baudoux AC. Diversité et importance écologique des virus dans le milieu marin. Med Sci (Paris) 2022 ; 38 : 1008–15. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Bouchard C, Godbout K, Tremblay JP. La correction de mutations pathogènes par Prime editing. Med Sci (Paris) 2024 ; 40 : 748–56 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.