Open Access
Issue |
Med Sci (Paris)
Volume 41, Number 1, Janvier 2025
|
|
---|---|---|
Page(s) | 47 - 52 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024193 | |
Published online | 31 January 2025 |
- Nei M, Rooney AP. Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 2005 ; 39 : 121–52. [CrossRef] [PubMed] [Google Scholar]
- Casane D, Laurenti P. Syllogomanie moléculaire: l’ADN non codant enrichit le jeu des possibles. Med Sci (Paris) 2014 ; 30 : 1177–83. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lynch M. The origins of genome architecture. Sunderland, Massachusetts : Sinauer, 2007. [Google Scholar]
- Li W-H, Gu Z, Wang H, Nekrutenko A. Evolutionary analyses of the human genome. Nature 2001 ; 409 : 847–9. [CrossRef] [PubMed] [Google Scholar]
- Hughes T, Liberles DA. The power-law distribution of gene family size is driven by the pseudogenisation rate’s heterogeneity between gene families. Gene 2008 ; 414 : 85–94. [CrossRef] [PubMed] [Google Scholar]
- Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science 2000 ; 290 : 1151–5. [CrossRef] [PubMed] [Google Scholar]
- Louchart A, Viriot L. From snout to beak: the loss of teeth in birds. Trends in Ecology & Evolution 2011 ; 26 : 663–73. [CrossRef] [PubMed] [Google Scholar]
- Louchart A, Buffrénil Vd, Bourdon E, et al. Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed through a response of bone cells to tooth-specific epithelial signals under unique conditions. Sci Rep 2018 ; 8 : 12952. [CrossRef] [PubMed] [Google Scholar]
- Meredith RW, Zhang G, Gilbert MTP, et al. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 2014 ; 346 : 1254390. [CrossRef] [PubMed] [Google Scholar]
- Emerling CA, Gibb GC, Tilak M-K, et al. Genomic data suggest parallel dental vestigialization within the xenarthran radiation. Peer Community Journal 2023; 3 : e75. [CrossRef] [Google Scholar]
- Emerling CA, Delsuc F, Nachman MW. Chitinase genes (CHIAs) provide genomic footprints of a post-Cretaceous dietary radiation in placental mammals. Sci Adv 2018 ; 4 : eaar6478. [CrossRef] [PubMed] [Google Scholar]
- Delsuc F, Emerling CA, Nachman MW. Les chitinases, témoins de la radiation des mammifères placentaires. Med Sci (Paris) 2019 ; 35 : 12–5. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Blin M, Rétaux S. Voir ou sentir, l’histoire Astyanax mexicanus. Med Sci (Paris) 2019 ; 35 : 19–23. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Retaux S, Casane D. Evolution of eye development in the darkness of caves: adaptation, drift, or both? EvoDevo 2013 ; 4 : 26. [CrossRef] [PubMed] [Google Scholar]
- Fumey J, Hinaux H, Noirot C, et al. Evidence for late Pleistocene origin of Astyanax mexicanus cavefish. BMC Evol Biol 2018 ; 18 : 43. [CrossRef] [PubMed] [Google Scholar]
- Policarpo M, Fumey J, Lafargeas P, et al. Contrasting gene decay in subterranean vertebrates: insights from cavefishes and fossorial mammals. Mol Biol Evol 2021 ; 38 : 589–605. [CrossRef] [PubMed] [Google Scholar]
- Policarpo M, Baldwin MW, Casane D, Salzburger W. Diversity and evolution of the vertebrate chemoreceptor gene repertoire. Nat Commun 202; 15 : 1421. [Google Scholar]
- Policarpo M, Bemis KE, Laurenti P, et al. Coevolution of the olfactory organ and its receptor repertoire in ray-finned fishes. BMC biol 2022 ; 20 : 195. [CrossRef] [PubMed] [Google Scholar]
- Nei M, Niimura Y, Nozawa M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 2008 ; 9 : 951–63. [CrossRef] [PubMed] [Google Scholar]
- Niimura Y, Matsui A, Touhara K. Acceleration of olfactory receptor gene loss in primate evolution: possible link to anatomical change in sensory systems and dietary transition. Mol Biol Evol 2018 ; 35 : 1437–50. [CrossRef] [PubMed] [Google Scholar]
- Niimura Y, Matsui A, Touhara K. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Gen Res 2014 ; 24 : 1485–96. [CrossRef] [PubMed] [Google Scholar]
- Policarpo M, Bemis KE, Tyler JC, et al. Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape. Mol Biol Evol 2021 ; 38 : 3742–53. [CrossRef] [PubMed] [Google Scholar]
- Farnkopf IC, George JC, Kishida T, et al. Olfactory epithelium and ontogeny of the nasal chambers in the bowhead whale (Balaena mysticetus). The Anatomical Record 2022 ; 305 : 643–67. [CrossRef] [PubMed] [Google Scholar]
- Hirose A, Nakamura G, Nikaido M, et al. Localized Expression of Olfactory Receptor Genes in the Olfactory Organ of Common Minke Whales. Int J Mol Sci 2024 ; 25 : 3855. [CrossRef] [PubMed] [Google Scholar]
- Moran LA. What’s in Your Genome? Toronto : University of Toronto Press, 2023. [Google Scholar]
- Lynch M, Bobay L-M, Catania F, et al. The Repatterning of Eukaryotic Genomes by Random Genetic Drift. Ann Rev Gen Hum Genet 2011 ; 12 : 347–66. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.