Open Access
Issue
Med Sci (Paris)
Volume 41, Number 1, Janvier 2025
Page(s) 33 - 39
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024191
Published online 31 January 2025
  1. Hardouin G, Magrin E, Corsia A, et al. Sickle Cell Disease: From Genetics to Curative Approaches. Annu Rev Genomics Hum Genet 2023 ; 24 : 255–75. [CrossRef] [PubMed] [Google Scholar]
  2. Cavazzana M, Corsia A, Brusson M, et al. Treating Sickle Cell Disease: Gene Therapy Approaches. Annu Rev Pharmacol Toxicol 2024 ; 65. doi.org/10.1146/annurev-pharmtox-022124–022000. [PubMed] [Google Scholar]
  3. Taher AT, Musallam KM, Cappellini MD. β-Thalassemias. N Engl J Med 2021 ; 384 : 727–43. [CrossRef] [PubMed] [Google Scholar]
  4. Origa R. β-Thalassemia. Genet Med 2017 ; 19 : 609–19. [CrossRef] [PubMed] [Google Scholar]
  5. Williams DA. The long road traveled in hematopoietic stem cell gene therapy. Mol Ther 2022 ; 30 : 3097–9. [CrossRef] [PubMed] [Google Scholar]
  6. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003 ; 302 : 415–9. [CrossRef] [PubMed] [Google Scholar]
  7. European Society of Gene Therapy (ESGT). One of three successfully treated CGD patients in a Swiss-German gene therapy trial died due to his underlying disease: A position statement from the European Society of Gene Therapy (ESGT). J Gene Med 2006 ; 8 : 1435. [CrossRef] [PubMed] [Google Scholar]
  8. Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008 ; 118 : 3132–42. [CrossRef] [PubMed] [Google Scholar]
  9. Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008 ; 118 : 3143–50. [CrossRef] [PubMed] [Google Scholar]
  10. Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 2010 ; 467 : 318–22. [CrossRef] [PubMed] [Google Scholar]
  11. Cesana D, Cicalese MP, Calabria A, et al. A case of T-cell acute lymphoblastic leukemia in retroviral gene therapy for ADA-SCID. Nat Commun 2024 ; 15 : 3662. [CrossRef] [PubMed] [Google Scholar]
  12. Locatelli F, Thompson AA, Kwiatkowski JL, et al. Betibeglogene Autotemcel Gene Therapy for Non-β0/β0 Genotype β-Thalassemia. N Engl J Med 2022 ; 386 : 415–27. [CrossRef] [PubMed] [Google Scholar]
  13. Kanter J, Walters MC, Krishnamurti L, et al. Biologic and Clinical Efficacy of LentiGlobin for Sickle Cell Disease. N Engl J Med 2022 ; 386 : 617–28. [CrossRef] [PubMed] [Google Scholar]
  14. Magrin E, Semeraro M, Hebert N, et al. Long-term outcomes of lentiviral gene therapy for the β-hemoglobinopathies: the HGB-205 trial. Nat Med 2022 ; 28 : 81–8. [CrossRef] [PubMed] [Google Scholar]
  15. Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012 ; 337 : 816–21. [CrossRef] [PubMed] [Google Scholar]
  16. Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013 ; 8 : 2281–308. [CrossRef] [PubMed] [Google Scholar]
  17. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013 ; 339 : 823–6. [CrossRef] [PubMed] [Google Scholar]
  18. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013 ; 339 : 819–23. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  19. Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc 2019 ; 14 : 2986–3012. [CrossRef] [PubMed] [Google Scholar]
  20. Paul B, Montoya G. CRISPR-Cas12a: Functional overview and applications. Biomed J 2020 ; 43 : 8–17. [CrossRef] [PubMed] [Google Scholar]
  21. Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 2013 ; 342 : 253–7. [CrossRef] [PubMed] [Google Scholar]
  22. Canver MC, Smith EC, Sher F, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 2015 ; 527 : 192–7. [CrossRef] [PubMed] [Google Scholar]
  23. Liu N, Hargreaves VV, Zhu Q, et al. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell 2018 ; 173 : 430–42.e17. [CrossRef] [PubMed] [Google Scholar]
  24. Steinberg MH. Fetal hemoglobin in sickle cell anemia. Blood 2020 ; 136 : 2392–400. [CrossRef] [PubMed] [Google Scholar]
  25. Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N Engl J Med 2021 ; 384 : 252–60. [CrossRef] [PubMed] [Google Scholar]
  26. Esrick EB, Lehmann LE, Biffi A, et al. Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease. N Engl J Med 2021 ; 384 : 205–15. [CrossRef] [PubMed] [Google Scholar]
  27. Frangoul H, Locatelli F, Sharma A, et al. Exagamglogene Autotemcel for Severe Sickle Cell Disease. N Engl J Med 2024 ; 390 : 1649–62. [CrossRef] [PubMed] [Google Scholar]
  28. Locatelli F, Lang P, Wall D, et al. Exagamglogene Autotemcel for Transfusion-Dependent β-Thalassemia. N Engl J Med 2024 ; 390 : 1663–76. [CrossRef] [PubMed] [Google Scholar]
  29. Fu B, Liao J, Chen S, et al. CRISPR-Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nat Med 2022 ; 28 : 1573–80. [CrossRef] [PubMed] [Google Scholar]
  30. Lattanzi A, Camarena J, Lahiri P, et al. Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Sci Transl Med 2021 ; 13 : eabf2444. [CrossRef] [PubMed] [Google Scholar]
  31. Magis W, DeWitt MA, Wyman SK, et al. High-level correction of the sickle mutation is amplified in vivo during erythroid differentiation. iScience 2022 ; 25 : 104374. [CrossRef] [PubMed] [Google Scholar]
  32. Moiani A, Letort G, Lizot S, et al. Non-viral DNA delivery and TALEN editing correct the sickle cell mutation in hematopoietic stem cells. Nat Commun 2024 ; 15 : 4965. [CrossRef] [PubMed] [Google Scholar]
  33. Shyr DC, Lowsky R, Miller W, et al. One Year Follow-up on the First Patient Treated with Nula-Cel: An Autologous CRISPR/Cas9 Gene Corrected CD34+ Cell Product to Treat Sickle Cell Disease. Blood 2023 ; 142 : 5000. [CrossRef] [Google Scholar]
  34. Uchida N, Li L, Nassehi T, et al. Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models. Cell Rep Med 2021 ; 2 : 100247. [CrossRef] [PubMed] [Google Scholar]
  35. Schiroli G, Conti A, Ferrari S, et al. Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response. Cell Stem Cell 2019 ; 24 : 551–65.e8. [CrossRef] [PubMed] [Google Scholar]
  36. Ferrari S, Jacob A, Beretta S, et al. Efficient gene editing of human long-term hematopoietic stem cells validated by clonal tracking. Nat Biotechnol 2020 ; 38 : 1298–308. [CrossRef] [PubMed] [Google Scholar]
  37. Selvaraj S, Feist WN, Viel S, et al. High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition. Nat Biotechnol 2024 ; 42 : 731–44. [CrossRef] [PubMed] [Google Scholar]
  38. Amendola M, Brusson M, Miccio A. CRISPRthripsis: The Risk of CRISPR/Cas9-induced Chromothripsis in Gene Therapy. Stem Cells Transl Med 2022 ; 11 : 1003–9. [CrossRef] [PubMed] [Google Scholar]
  39. Antoniou P, Hardouin G, Martinucci P, et al. Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression. Nat Commun 2022 ; 13 : 6618. [CrossRef] [PubMed] [Google Scholar]
  40. Hardouin G, Antoniou P, Martinucci P, et al. Adenine base editor-mediated correction of the common and severe IVS1-110 (G>A) β-thalassemia mutation. Blood 2023 ; 141 : 1169–79. [CrossRef] [PubMed] [Google Scholar]
  41. Everette KA, Newby GA, Levine RM, et al. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat Biomed Eng 2023 ; 7 : 616–28. [CrossRef] [PubMed] [Google Scholar]
  42. Fontana L, Alahouzou Z, Miccio A, et al. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes (Basel) 2023 ; 14 : 577. [CrossRef] [PubMed] [Google Scholar]
  43. Wang L, Lai Y, Liu R, et al. Treatment of patients with severe transfusion-dependent βthalassemia with CS-101, an autologous, ex vivo edited, CD34+ hematopoietic stem cell product using innovative transformer base editor (tHE). Abstract S295 presented at EHA2024 2024. [Google Scholar]
  44. Han W, Qiu H-Y, Sun S, et al. Base editing of the HBG promoter induces potent fetal hemoglobin expression with no detectable off-target mutations in human HSCs. Cell Stem Cell 2023 ; 30 : 1624–39.e8. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.