Open Access
Numéro |
Med Sci (Paris)
Volume 41, Numéro 1, Janvier 2025
|
|
---|---|---|
Page(s) | 33 - 39 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024191 | |
Publié en ligne | 31 janvier 2025 |
- Hardouin G, Magrin E, Corsia A, et al. Sickle Cell Disease: From Genetics to Curative Approaches. Annu Rev Genomics Hum Genet 2023 ; 24 : 255–75. [CrossRef] [PubMed] [Google Scholar]
- Cavazzana M, Corsia A, Brusson M, et al. Treating Sickle Cell Disease: Gene Therapy Approaches. Annu Rev Pharmacol Toxicol 2024 ; 65. doi.org/10.1146/annurev-pharmtox-022124–022000. [PubMed] [Google Scholar]
- Taher AT, Musallam KM, Cappellini MD. β-Thalassemias. N Engl J Med 2021 ; 384 : 727–43. [CrossRef] [PubMed] [Google Scholar]
- Origa R. β-Thalassemia. Genet Med 2017 ; 19 : 609–19. [CrossRef] [PubMed] [Google Scholar]
- Williams DA. The long road traveled in hematopoietic stem cell gene therapy. Mol Ther 2022 ; 30 : 3097–9. [CrossRef] [PubMed] [Google Scholar]
- Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003 ; 302 : 415–9. [CrossRef] [PubMed] [Google Scholar]
- European Society of Gene Therapy (ESGT). One of three successfully treated CGD patients in a Swiss-German gene therapy trial died due to his underlying disease: A position statement from the European Society of Gene Therapy (ESGT). J Gene Med 2006 ; 8 : 1435. [CrossRef] [PubMed] [Google Scholar]
- Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008 ; 118 : 3132–42. [CrossRef] [PubMed] [Google Scholar]
- Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008 ; 118 : 3143–50. [CrossRef] [PubMed] [Google Scholar]
- Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 2010 ; 467 : 318–22. [CrossRef] [PubMed] [Google Scholar]
- Cesana D, Cicalese MP, Calabria A, et al. A case of T-cell acute lymphoblastic leukemia in retroviral gene therapy for ADA-SCID. Nat Commun 2024 ; 15 : 3662. [CrossRef] [PubMed] [Google Scholar]
- Locatelli F, Thompson AA, Kwiatkowski JL, et al. Betibeglogene Autotemcel Gene Therapy for Non-β0/β0 Genotype β-Thalassemia. N Engl J Med 2022 ; 386 : 415–27. [CrossRef] [PubMed] [Google Scholar]
- Kanter J, Walters MC, Krishnamurti L, et al. Biologic and Clinical Efficacy of LentiGlobin for Sickle Cell Disease. N Engl J Med 2022 ; 386 : 617–28. [CrossRef] [PubMed] [Google Scholar]
- Magrin E, Semeraro M, Hebert N, et al. Long-term outcomes of lentiviral gene therapy for the β-hemoglobinopathies: the HGB-205 trial. Nat Med 2022 ; 28 : 81–8. [CrossRef] [PubMed] [Google Scholar]
- Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012 ; 337 : 816–21. [CrossRef] [PubMed] [Google Scholar]
- Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013 ; 8 : 2281–308. [CrossRef] [PubMed] [Google Scholar]
- Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013 ; 339 : 823–6. [CrossRef] [PubMed] [Google Scholar]
- Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013 ; 339 : 819–23. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc 2019 ; 14 : 2986–3012. [CrossRef] [PubMed] [Google Scholar]
- Paul B, Montoya G. CRISPR-Cas12a: Functional overview and applications. Biomed J 2020 ; 43 : 8–17. [CrossRef] [PubMed] [Google Scholar]
- Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 2013 ; 342 : 253–7. [CrossRef] [PubMed] [Google Scholar]
- Canver MC, Smith EC, Sher F, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 2015 ; 527 : 192–7. [CrossRef] [PubMed] [Google Scholar]
- Liu N, Hargreaves VV, Zhu Q, et al. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell 2018 ; 173 : 430–42.e17. [CrossRef] [PubMed] [Google Scholar]
- Steinberg MH. Fetal hemoglobin in sickle cell anemia. Blood 2020 ; 136 : 2392–400. [CrossRef] [PubMed] [Google Scholar]
- Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N Engl J Med 2021 ; 384 : 252–60. [CrossRef] [PubMed] [Google Scholar]
- Esrick EB, Lehmann LE, Biffi A, et al. Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease. N Engl J Med 2021 ; 384 : 205–15. [CrossRef] [PubMed] [Google Scholar]
- Frangoul H, Locatelli F, Sharma A, et al. Exagamglogene Autotemcel for Severe Sickle Cell Disease. N Engl J Med 2024 ; 390 : 1649–62. [CrossRef] [PubMed] [Google Scholar]
- Locatelli F, Lang P, Wall D, et al. Exagamglogene Autotemcel for Transfusion-Dependent β-Thalassemia. N Engl J Med 2024 ; 390 : 1663–76. [CrossRef] [PubMed] [Google Scholar]
- Fu B, Liao J, Chen S, et al. CRISPR-Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nat Med 2022 ; 28 : 1573–80. [CrossRef] [PubMed] [Google Scholar]
- Lattanzi A, Camarena J, Lahiri P, et al. Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Sci Transl Med 2021 ; 13 : eabf2444. [CrossRef] [PubMed] [Google Scholar]
- Magis W, DeWitt MA, Wyman SK, et al. High-level correction of the sickle mutation is amplified in vivo during erythroid differentiation. iScience 2022 ; 25 : 104374. [CrossRef] [PubMed] [Google Scholar]
- Moiani A, Letort G, Lizot S, et al. Non-viral DNA delivery and TALEN editing correct the sickle cell mutation in hematopoietic stem cells. Nat Commun 2024 ; 15 : 4965. [CrossRef] [PubMed] [Google Scholar]
- Shyr DC, Lowsky R, Miller W, et al. One Year Follow-up on the First Patient Treated with Nula-Cel: An Autologous CRISPR/Cas9 Gene Corrected CD34+ Cell Product to Treat Sickle Cell Disease. Blood 2023 ; 142 : 5000. [CrossRef] [Google Scholar]
- Uchida N, Li L, Nassehi T, et al. Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models. Cell Rep Med 2021 ; 2 : 100247. [CrossRef] [PubMed] [Google Scholar]
- Schiroli G, Conti A, Ferrari S, et al. Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response. Cell Stem Cell 2019 ; 24 : 551–65.e8. [CrossRef] [PubMed] [Google Scholar]
- Ferrari S, Jacob A, Beretta S, et al. Efficient gene editing of human long-term hematopoietic stem cells validated by clonal tracking. Nat Biotechnol 2020 ; 38 : 1298–308. [CrossRef] [PubMed] [Google Scholar]
- Selvaraj S, Feist WN, Viel S, et al. High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition. Nat Biotechnol 2024 ; 42 : 731–44. [CrossRef] [PubMed] [Google Scholar]
- Amendola M, Brusson M, Miccio A. CRISPRthripsis: The Risk of CRISPR/Cas9-induced Chromothripsis in Gene Therapy. Stem Cells Transl Med 2022 ; 11 : 1003–9. [CrossRef] [PubMed] [Google Scholar]
- Antoniou P, Hardouin G, Martinucci P, et al. Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression. Nat Commun 2022 ; 13 : 6618. [CrossRef] [PubMed] [Google Scholar]
- Hardouin G, Antoniou P, Martinucci P, et al. Adenine base editor-mediated correction of the common and severe IVS1-110 (G>A) β-thalassemia mutation. Blood 2023 ; 141 : 1169–79. [CrossRef] [PubMed] [Google Scholar]
- Everette KA, Newby GA, Levine RM, et al. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat Biomed Eng 2023 ; 7 : 616–28. [CrossRef] [PubMed] [Google Scholar]
- Fontana L, Alahouzou Z, Miccio A, et al. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes (Basel) 2023 ; 14 : 577. [CrossRef] [PubMed] [Google Scholar]
- Wang L, Lai Y, Liu R, et al. Treatment of patients with severe transfusion-dependent βthalassemia with CS-101, an autologous, ex vivo edited, CD34+ hematopoietic stem cell product using innovative transformer base editor (tHE). Abstract S295 presented at EHA2024 2024. [Google Scholar]
- Han W, Qiu H-Y, Sun S, et al. Base editing of the HBG promoter induces potent fetal hemoglobin expression with no detectable off-target mutations in human HSCs. Cell Stem Cell 2023 ; 30 : 1624–39.e8. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.