Open Access
Issue
Med Sci (Paris)
Volume 40, Number 11, Novembre 2024
Page(s) 829 - 836
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024152
Published online 10 December 2024
  1. Rustom A, Saffrich R, Markovic I, et al. Nanotubular highways for intercellular organelle transport. Science 2004 ; 303 : 1007–10. [CrossRef] [PubMed] [Google Scholar]
  2. Cordero Cervantes D, Zurzolo C. Peering into tunneling nanotubes-The path forward. EMBO J 2021 ; 40 : e105789. [CrossRef] [PubMed] [Google Scholar]
  3. Souriant S, Dupont M, Neyrolles O, et al. Les nanotubes membranaires des macrophages infectés par le VIH-1 – Un moyen pour le virus de se propager plus vite dans un contexte de tuberculose. Med Sci (Paris) 2019 ; 35 : 825–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Capobianco DL, Simone L, Svelto M, Pisani F. Intercellular crosstalk mediated by tunneling nanotubes between central nervous system cells. What we need to advance. Front Physiol 2023 ; 14 : 1214210. [CrossRef] [PubMed] [Google Scholar]
  5. Ortin-Martinez A, Yan NE, Tsai ELS, et al. Photoreceptor nanotubes mediate the in vivo exchange of intracellular material. EMBO J 2021 ; 40 : e107264. [CrossRef] [PubMed] [Google Scholar]
  6. Zhu H, Xue C, Xu X, et al. Rab8a/Rab11a regulate intercellular communications between neural cells via tunneling nanotubes. Cell Death Dis 2016 ; 7 : e2523. [CrossRef] [PubMed] [Google Scholar]
  7. Shepherd GM, Erulkar SD. Centenary of the synapse: from Sherrington to the molecular biology of the synapse and beyond. Trends Neurosci 1997 ; 20 : 385–92. [CrossRef] [PubMed] [Google Scholar]
  8. Zurzolo C. Tunneling nanotubes: Reshaping connectivity. Curr Opin Cell Biol 2021 ; 71 : 139–147. [CrossRef] [PubMed] [Google Scholar]
  9. Rustom A. The missing link: does tunnelling nanotube-based supercellularity provide a new understanding of chronic and lifestyle diseases? Open Biol 2016 ; 6. [Google Scholar]
  10. Korenkova O, Pepe A, Zurzolo C. Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges?. Cell Stress 2020 ; 4 : 30–43. [CrossRef] [PubMed] [Google Scholar]
  11. Tishchenko A, Azorín DD, Vidal-Brime L, et al. Cx43 and Associated Cell Signaling Pathways Regulate Tunneling Nanotubes in Breast Cancer Cells. Cancers 2020 ; 12. [PubMed] [Google Scholar]
  12. Abounit S, Zurzolo C. Wiring through tunneling nanotubes--from electrical signals to organelle transfer. J Cell Sci 2012 ; 125 : 1089–98. [CrossRef] [PubMed] [Google Scholar]
  13. Sartori-Rupp A, Cordero Cervantes D, Pepe A, et al. Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells. Nat Commun 2019 ; 10 : 342. [Google Scholar]
  14. Austefjord MW, Gerdes HH, Wang X. Tunneling nanotubes: Diversity in morphology and structure. Commun Integr Biol 2014 ; 7 : e27934. [CrossRef] [PubMed] [Google Scholar]
  15. Sáenz-de-Santa-María I. Bernardo-Castiñeira C, Enciso E, et al. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes. Oncotarget 2017 ; 8 : 20939–60. [CrossRef] [PubMed] [Google Scholar]
  16. Wang X, Bukoreshtliev NV, Gerdes HH. Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes. PLoS One 2012 ; 7 : e47429. [CrossRef] [PubMed] [Google Scholar]
  17. Gurke S, Barroso JF, Gerdes HH. The art of cellular communication: tunneling nanotubes bridge the divide. Histochem Cell Biol 2008 ; 129 : 539–50. [CrossRef] [PubMed] [Google Scholar]
  18. Bukoreshtliev NV, Wang X, Hodneland E, et al. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett 2009 ; 583 : 1481–8. [CrossRef] [PubMed] [Google Scholar]
  19. Wang X, Gerdes HH. Long-distance electrical coupling via tunneling nanotubes. Biochim Biophys Acta 2012 ; 1818 : 2082–6. [CrossRef] [PubMed] [Google Scholar]
  20. Sowinski S, Jolly C, Berninghausen O, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 2008; 10 : 211–9. [CrossRef] [PubMed] [Google Scholar]
  21. Wang X, Gerdes HH. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 2015 ; 22 : 1181–91. [CrossRef] [PubMed] [Google Scholar]
  22. Tardivel M, Bégard S, Bousset L, et al. Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathol Commun 2016 ; 4 : 117. [CrossRef] [PubMed] [Google Scholar]
  23. Dagar S, Pathak D, Oza HV, Mylavarapu SVS. Tunneling nanotubes and related structures: molecular mechanisms of formation and function. Biochem J 2021 ; 478 : 3977–98. [CrossRef] [PubMed] [Google Scholar]
  24. Morin M, Moindjie H, Nahmias C. Le transport mitochondrial — Quel impact dans le cancer ? Med Sci (Paris) 2022 ; 38 : 585–93. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  25. Dorban G, Antoine N, Defaweux V. Les prions exploitent les communications neuro-immunitaires. Med Sci (Paris) 2010 ; 26 : 610–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  26. Gousset K, Schiff E, Langevin C, et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 2009 ; 11 : 328–36. [Google Scholar]
  27. Ljubojevic N, Henderson JM, Zurzolo C. The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions. Trends Cell Biol 2021 ; 31 : 130–42. [CrossRef] [PubMed] [Google Scholar]
  28. Hanna S.J, McCoy-Simandle K, Miskolci V, et al. The Role of Rho-GTPases and actin polymerization during Macrophage Tunneling Nanotube Biogenesis. Sci Rep 2017 ; 7 : 8547. [CrossRef] [PubMed] [Google Scholar]
  29. Wang X, Veruki ML, Bukoreshtliev NV, et al. Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc Natl Acad Sci USA 2010 ; 107 : 17194–9. [CrossRef] [PubMed] [Google Scholar]
  30. Brukman NG, Uygur B, Podbilewicz B, Chernomordik L. V. How cells fuse. J Cell Biol 2019; 218 : 1436–51. [CrossRef] [PubMed] [Google Scholar]
  31. Sáenz-de-Santa-María I, Henderson JM, Pepe A, Zurzolo C. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking. Curr Protoc 2023; 3 : e939. [CrossRef] [PubMed] [Google Scholar]
  32. Reichert D, Scheinpflug J, Karbanová J, et al. Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells. Exp Hematol 2016 ; 44, 1092–1112. e1092. [CrossRef] [PubMed] [Google Scholar]
  33. Zani BG, Indolfi L, Edelman ER. Tubular bridges for bronchial epithelial cell migration and communication. PLoS One 2010 ; 5 : e8930. [CrossRef] [PubMed] [Google Scholar]
  34. Alarcon-Martinez L, Villafranca-Baughman D, Quintero H, et al. Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature 2020 ; 585 : 91–5. [CrossRef] [PubMed] [Google Scholar]
  35. Miguel-Tomé S, Llinás RR. Broadening the definition of a nervous system to better understand the evolution of plants and animals. Plant Signal Behav 2021 ; 16 : 1927562. [CrossRef] [PubMed] [Google Scholar]
  36. Leclerc C, Néant I, Moreau M. The calcium: an early signal that initiates the formation of the nervous system during embryogenesis. Front Mol Neurosci 2012 ; 5: 3. [CrossRef] [Google Scholar]
  37. Cordero Cervantes D, Khare H, Wilson AM, et al. 3D reconstruction of the cerebellar germinal layer reveals tunneling connections between developing granule cells. Sci Adv 2023 ; 9 : eadf3471. [CrossRef] [PubMed] [Google Scholar]
  38. Vargas JY, Loria F, Wu YJ, et al. The Wnt/Ca2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes. EMBO J 2019 ; 38 : e101230. [CrossRef] [PubMed] [Google Scholar]
  39. Chakraborty R, Nonaka T, Hasegawa M, Zurzolo C. Tunnelling nanotubes between neuronal and microglial cells allow bi-directional transfer of α-Synuclein and mitochondria. Cell Death Dis 2023 ; 14 : 329. [CrossRef] [PubMed] [Google Scholar]
  40. Pepe A, Pietropaoli S, Vos M, et al. Tunneling nanotubes provide a route for SARS-CoV-2 spreading. Sci Adv 2022 ; 8 : eabo0171. [CrossRef] [PubMed] [Google Scholar]
  41. Valdebenito S, Malik S, Luu R, et al. Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes to adapt them to hypoxic and metabolic tumor conditions. Sci Rep 2021 ; 11 : 14556. [CrossRef] [PubMed] [Google Scholar]
  42. Wang X, Liang J, Sun H. The Network of Tumor Microtubes: An Improperly Reactivated Neural Cell Network With Stemness Feature for Resistance and Recurrence in Gliomas. Front Oncol 2022 ; 12 : 921975. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.