Open Access
Numéro |
Med Sci (Paris)
Volume 40, Numéro 11, Novembre 2024
|
|
---|---|---|
Page(s) | 829 - 836 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024152 | |
Publié en ligne | 10 décembre 2024 |
- Rustom A, Saffrich R, Markovic I, et al. Nanotubular highways for intercellular organelle transport. Science 2004 ; 303 : 1007–10. [CrossRef] [PubMed] [Google Scholar]
- Cordero Cervantes D, Zurzolo C. Peering into tunneling nanotubes-The path forward. EMBO J 2021 ; 40 : e105789. [CrossRef] [PubMed] [Google Scholar]
- Souriant S, Dupont M, Neyrolles O, et al. Les nanotubes membranaires des macrophages infectés par le VIH-1 – Un moyen pour le virus de se propager plus vite dans un contexte de tuberculose. Med Sci (Paris) 2019 ; 35 : 825–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Capobianco DL, Simone L, Svelto M, Pisani F. Intercellular crosstalk mediated by tunneling nanotubes between central nervous system cells. What we need to advance. Front Physiol 2023 ; 14 : 1214210. [CrossRef] [PubMed] [Google Scholar]
- Ortin-Martinez A, Yan NE, Tsai ELS, et al. Photoreceptor nanotubes mediate the in vivo exchange of intracellular material. EMBO J 2021 ; 40 : e107264. [CrossRef] [PubMed] [Google Scholar]
- Zhu H, Xue C, Xu X, et al. Rab8a/Rab11a regulate intercellular communications between neural cells via tunneling nanotubes. Cell Death Dis 2016 ; 7 : e2523. [CrossRef] [PubMed] [Google Scholar]
- Shepherd GM, Erulkar SD. Centenary of the synapse: from Sherrington to the molecular biology of the synapse and beyond. Trends Neurosci 1997 ; 20 : 385–92. [CrossRef] [PubMed] [Google Scholar]
- Zurzolo C. Tunneling nanotubes: Reshaping connectivity. Curr Opin Cell Biol 2021 ; 71 : 139–147. [CrossRef] [PubMed] [Google Scholar]
- Rustom A. The missing link: does tunnelling nanotube-based supercellularity provide a new understanding of chronic and lifestyle diseases? Open Biol 2016 ; 6. [Google Scholar]
- Korenkova O, Pepe A, Zurzolo C. Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges?. Cell Stress 2020 ; 4 : 30–43. [CrossRef] [PubMed] [Google Scholar]
- Tishchenko A, Azorín DD, Vidal-Brime L, et al. Cx43 and Associated Cell Signaling Pathways Regulate Tunneling Nanotubes in Breast Cancer Cells. Cancers 2020 ; 12. [PubMed] [Google Scholar]
- Abounit S, Zurzolo C. Wiring through tunneling nanotubes--from electrical signals to organelle transfer. J Cell Sci 2012 ; 125 : 1089–98. [CrossRef] [PubMed] [Google Scholar]
- Sartori-Rupp A, Cordero Cervantes D, Pepe A, et al. Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells. Nat Commun 2019 ; 10 : 342. [Google Scholar]
- Austefjord MW, Gerdes HH, Wang X. Tunneling nanotubes: Diversity in morphology and structure. Commun Integr Biol 2014 ; 7 : e27934. [CrossRef] [PubMed] [Google Scholar]
- Sáenz-de-Santa-María I. Bernardo-Castiñeira C, Enciso E, et al. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes. Oncotarget 2017 ; 8 : 20939–60. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Bukoreshtliev NV, Gerdes HH. Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes. PLoS One 2012 ; 7 : e47429. [CrossRef] [PubMed] [Google Scholar]
- Gurke S, Barroso JF, Gerdes HH. The art of cellular communication: tunneling nanotubes bridge the divide. Histochem Cell Biol 2008 ; 129 : 539–50. [CrossRef] [PubMed] [Google Scholar]
- Bukoreshtliev NV, Wang X, Hodneland E, et al. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett 2009 ; 583 : 1481–8. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Gerdes HH. Long-distance electrical coupling via tunneling nanotubes. Biochim Biophys Acta 2012 ; 1818 : 2082–6. [CrossRef] [PubMed] [Google Scholar]
- Sowinski S, Jolly C, Berninghausen O, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 2008; 10 : 211–9. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Gerdes HH. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 2015 ; 22 : 1181–91. [CrossRef] [PubMed] [Google Scholar]
- Tardivel M, Bégard S, Bousset L, et al. Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathol Commun 2016 ; 4 : 117. [CrossRef] [PubMed] [Google Scholar]
- Dagar S, Pathak D, Oza HV, Mylavarapu SVS. Tunneling nanotubes and related structures: molecular mechanisms of formation and function. Biochem J 2021 ; 478 : 3977–98. [CrossRef] [PubMed] [Google Scholar]
- Morin M, Moindjie H, Nahmias C. Le transport mitochondrial — Quel impact dans le cancer ? Med Sci (Paris) 2022 ; 38 : 585–93. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Dorban G, Antoine N, Defaweux V. Les prions exploitent les communications neuro-immunitaires. Med Sci (Paris) 2010 ; 26 : 610–4. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Gousset K, Schiff E, Langevin C, et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 2009 ; 11 : 328–36. [Google Scholar]
- Ljubojevic N, Henderson JM, Zurzolo C. The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions. Trends Cell Biol 2021 ; 31 : 130–42. [CrossRef] [PubMed] [Google Scholar]
- Hanna S.J, McCoy-Simandle K, Miskolci V, et al. The Role of Rho-GTPases and actin polymerization during Macrophage Tunneling Nanotube Biogenesis. Sci Rep 2017 ; 7 : 8547. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Veruki ML, Bukoreshtliev NV, et al. Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc Natl Acad Sci USA 2010 ; 107 : 17194–9. [CrossRef] [PubMed] [Google Scholar]
- Brukman NG, Uygur B, Podbilewicz B, Chernomordik L. V. How cells fuse. J Cell Biol 2019; 218 : 1436–51. [CrossRef] [PubMed] [Google Scholar]
- Sáenz-de-Santa-María I, Henderson JM, Pepe A, Zurzolo C. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking. Curr Protoc 2023; 3 : e939. [CrossRef] [PubMed] [Google Scholar]
- Reichert D, Scheinpflug J, Karbanová J, et al. Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells. Exp Hematol 2016 ; 44, 1092–1112. e1092. [CrossRef] [PubMed] [Google Scholar]
- Zani BG, Indolfi L, Edelman ER. Tubular bridges for bronchial epithelial cell migration and communication. PLoS One 2010 ; 5 : e8930. [CrossRef] [PubMed] [Google Scholar]
- Alarcon-Martinez L, Villafranca-Baughman D, Quintero H, et al. Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature 2020 ; 585 : 91–5. [CrossRef] [PubMed] [Google Scholar]
- Miguel-Tomé S, Llinás RR. Broadening the definition of a nervous system to better understand the evolution of plants and animals. Plant Signal Behav 2021 ; 16 : 1927562. [CrossRef] [PubMed] [Google Scholar]
- Leclerc C, Néant I, Moreau M. The calcium: an early signal that initiates the formation of the nervous system during embryogenesis. Front Mol Neurosci 2012 ; 5: 3. [CrossRef] [Google Scholar]
- Cordero Cervantes D, Khare H, Wilson AM, et al. 3D reconstruction of the cerebellar germinal layer reveals tunneling connections between developing granule cells. Sci Adv 2023 ; 9 : eadf3471. [CrossRef] [PubMed] [Google Scholar]
- Vargas JY, Loria F, Wu YJ, et al. The Wnt/Ca2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes. EMBO J 2019 ; 38 : e101230. [CrossRef] [PubMed] [Google Scholar]
- Chakraborty R, Nonaka T, Hasegawa M, Zurzolo C. Tunnelling nanotubes between neuronal and microglial cells allow bi-directional transfer of α-Synuclein and mitochondria. Cell Death Dis 2023 ; 14 : 329. [CrossRef] [PubMed] [Google Scholar]
- Pepe A, Pietropaoli S, Vos M, et al. Tunneling nanotubes provide a route for SARS-CoV-2 spreading. Sci Adv 2022 ; 8 : eabo0171. [CrossRef] [PubMed] [Google Scholar]
- Valdebenito S, Malik S, Luu R, et al. Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes to adapt them to hypoxic and metabolic tumor conditions. Sci Rep 2021 ; 11 : 14556. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Liang J, Sun H. The Network of Tumor Microtubes: An Improperly Reactivated Neural Cell Network With Stemness Feature for Resistance and Recurrence in Gliomas. Front Oncol 2022 ; 12 : 921975. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.