Free Access
Issue |
Med Sci (Paris)
Volume 40, Novembre 2024
Les Cahiers de Myologie
|
|
---|---|---|
Page(s) | 46 - 51 | |
Section | Prix SFM | |
DOI | https://doi.org/10.1051/medsci/2024138 | |
Published online | 18 November 2024 |
- Duan D, Goemans N, Takeda S, et al. Duchenne muscular dystrophy. Nat Rev Dis Primers 2021; 7 (1): 13. [CrossRef] [PubMed] [Google Scholar]
- Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96: 253–305. [CrossRef] [PubMed] [Google Scholar]
- Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 2018; 17 (3): 251–267. [CrossRef] [PubMed] [Google Scholar]
- Schreiber A, Brochard S, Rippert P, et al. Corticosteroids in Duchenne muscular dystrophy: impact on the motor function measure sensitivity to change and implications for clinical trials. Dev Med Child Neurol 2018; 60 (2): 185–191. [CrossRef] [PubMed] [Google Scholar]
- Wilton-Clark H, Yokota T. Recent Trends in Antisense Therapies for Duchenne Muscular Dystrophy. Pharmaceutics 2023; 15: 778. [CrossRef] [PubMed] [Google Scholar]
- Iannaccone S, Phan H, Straub V, et al. P.132 Casimersen in patients with Duchenne muscular dystrophy amenable to exon 45 skipping: Interim results from the Phase 3 ESSENCE trial. Neuromuscul Disord 2022; 32 Suppl 1: S102. [CrossRef] [Google Scholar]
- Scott JM, Li S, Harper SQ, et al. Viral vectors for gene transfer of micro-, mini-, or full-length dystrophin. Neuromuscular Disorders 2002; 12 Suppl 1: S23–S29. [CrossRef] [PubMed] [Google Scholar]
- Le Guiner C, Servais L, Montus M, et al. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun 2017; 8: 16105. [CrossRef] [PubMed] [Google Scholar]
- Davies KE, Vogt J. Long-term clinical follow-up of a family with Becker muscular dystrophy associated with a large deletion in the DMD gene. Neuromuscul Disord 2024; 39: 5–9. [CrossRef] [PubMed] [Google Scholar]
- Mullard A. FDA approves first gene therapy for Duchenne muscular dystrophy, despite internal objections. Nat Rev Drug Discov 2023; 22 (8): 610–610. [CrossRef] [PubMed] [Google Scholar]
- Rind DM. The FDA and Gene Therapy for Duchenne Muscular Dystrophy. JAMA 2024; 331 (20): 1705–1706. [CrossRef] [PubMed] [Google Scholar]
- Birch SM, Lawlor MW, Conlon TJ, et al. Assessment of systemic AAV-microdystrophin gene therapy in the GRMD model of Duchenne muscular dystrophy. Sci Transl Med 2023; 15 (677): eabo1815. [CrossRef] [PubMed] [Google Scholar]
- Lai Y, Thomas GD, Yue Y, et al. Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 2009; 119 (3): 624–635. [CrossRef] [PubMed] [Google Scholar]
- Constantin B. Dystrophin complex functions as a scaffold for signalling proteins. Biochim Biophys Acta 2014; 1838 (2): 635–642. [CrossRef] [PubMed] [Google Scholar]
- Phelps SF, Hauser MA, Cole NM, et al. Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 1995; 4 (8): 1251–1258. [CrossRef] [PubMed] [Google Scholar]
- Wells DJ, Wells KE, Asante EA, et al. Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 1995; 4 (8): 1245–1250. [CrossRef] [PubMed] [Google Scholar]
- Calcedo R, Vandenberghe LH, Gao G, et al. Worldwide Epidemiology of Neutralizing Antibodies to Adeno-Associated Viruses. J Infect Dis 2009; 199 (3): 381–390. [CrossRef] [PubMed] [Google Scholar]
- Bönnemann CG, Belluscio BA, Braun S, et al. Dystrophin Immunity after Gene Therapy for Duchenne’s Muscular Dystrophy. N Engl J Med 2023; 388 (24): 2294–2296. [CrossRef] [PubMed] [Google Scholar]
- Tabebordbar M, Lagerborg KA, Stanton A, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 2021; 184 (19): 4919–4938.e22. [CrossRef] [PubMed] [Google Scholar]
- Hong AV, Suel L, Poupiot J, et al. An integrin-targeting AAV developed using a novel computational rational design methodology presents improved targeting of the skeletal muscle and reduced liver tropism. Preprint Hal-04310212 2023. [Google Scholar]
- Lai Y, Yue Y, Liu M, et al. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 2005; 23 (11): 1435–1439. [CrossRef] [PubMed] [Google Scholar]
- Albini S, Palmieri L, Dubois A, et al. Assessment of Therapeutic Potential of a Dual AAV Approach for Duchenne Muscular Dystrophy. Int J Mol Sci 2023; 24 (14): 11421. [CrossRef] [PubMed] [Google Scholar]
- Tasfaout H, Halbert CL, McMillen TS, et al. Split intein-mediated protein trans-splicing to express large dystrophins. Nature 2024; 632 (8023): 192–200. [CrossRef] [PubMed] [Google Scholar]
- Abmayr S, Gregorevic P, Allen JM, et al. Phenotypic Improvement of Dystrophic Muscles by rAAV/Microdystrophin Vectors Is Augmented by Igf1 Codelivery. Mol Ther 2005; 12 (3): 441–450. [CrossRef] [PubMed] [Google Scholar]
- Heller KN, Mendell JT, Mendell JR, et al. MicroRNA-29 overexpression by adeno-associated virus suppresses fibrosis and restores muscle function in combination with micro-dystrophin. JCI Insight 2017; 2 (9) [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.