Accès gratuit
Numéro
Med Sci (Paris)
Volume 40, Novembre 2024
Les Cahiers de Myologie
Page(s) 46 - 51
Section Prix SFM
DOI https://doi.org/10.1051/medsci/2024138
Publié en ligne 18 novembre 2024
  1. Duan D, Goemans N, Takeda S, et al. Duchenne muscular dystrophy. Nat Rev Dis Primers 2021; 7 (1): 13. [CrossRef] [PubMed] [Google Scholar]
  2. Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96: 253–305. [CrossRef] [PubMed] [Google Scholar]
  3. Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 2018; 17 (3): 251–267. [CrossRef] [PubMed] [Google Scholar]
  4. Schreiber A, Brochard S, Rippert P, et al. Corticosteroids in Duchenne muscular dystrophy: impact on the motor function measure sensitivity to change and implications for clinical trials. Dev Med Child Neurol 2018; 60 (2): 185–191. [CrossRef] [PubMed] [Google Scholar]
  5. Wilton-Clark H, Yokota T. Recent Trends in Antisense Therapies for Duchenne Muscular Dystrophy. Pharmaceutics 2023; 15: 778. [CrossRef] [PubMed] [Google Scholar]
  6. Iannaccone S, Phan H, Straub V, et al. P.132 Casimersen in patients with Duchenne muscular dystrophy amenable to exon 45 skipping: Interim results from the Phase 3 ESSENCE trial. Neuromuscul Disord 2022; 32 Suppl 1: S102. [CrossRef] [Google Scholar]
  7. Scott JM, Li S, Harper SQ, et al. Viral vectors for gene transfer of micro-, mini-, or full-length dystrophin. Neuromuscular Disorders 2002; 12 Suppl 1: S23–S29. [CrossRef] [PubMed] [Google Scholar]
  8. Le Guiner C, Servais L, Montus M, et al. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun 2017; 8: 16105. [CrossRef] [PubMed] [Google Scholar]
  9. Davies KE, Vogt J. Long-term clinical follow-up of a family with Becker muscular dystrophy associated with a large deletion in the DMD gene. Neuromuscul Disord 2024; 39: 5–9. [CrossRef] [PubMed] [Google Scholar]
  10. Mullard A. FDA approves first gene therapy for Duchenne muscular dystrophy, despite internal objections. Nat Rev Drug Discov 2023; 22 (8): 610–610. [CrossRef] [PubMed] [Google Scholar]
  11. Rind DM. The FDA and Gene Therapy for Duchenne Muscular Dystrophy. JAMA 2024; 331 (20): 1705–1706. [CrossRef] [PubMed] [Google Scholar]
  12. Birch SM, Lawlor MW, Conlon TJ, et al. Assessment of systemic AAV-microdystrophin gene therapy in the GRMD model of Duchenne muscular dystrophy. Sci Transl Med 2023; 15 (677): eabo1815. [CrossRef] [PubMed] [Google Scholar]
  13. Lai Y, Thomas GD, Yue Y, et al. Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 2009; 119 (3): 624–635. [CrossRef] [PubMed] [Google Scholar]
  14. Constantin B. Dystrophin complex functions as a scaffold for signalling proteins. Biochim Biophys Acta 2014; 1838 (2): 635–642. [CrossRef] [PubMed] [Google Scholar]
  15. Phelps SF, Hauser MA, Cole NM, et al. Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 1995; 4 (8): 1251–1258. [CrossRef] [PubMed] [Google Scholar]
  16. Wells DJ, Wells KE, Asante EA, et al. Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 1995; 4 (8): 1245–1250. [CrossRef] [PubMed] [Google Scholar]
  17. Calcedo R, Vandenberghe LH, Gao G, et al. Worldwide Epidemiology of Neutralizing Antibodies to Adeno-Associated Viruses. J Infect Dis 2009; 199 (3): 381–390. [CrossRef] [PubMed] [Google Scholar]
  18. Bönnemann CG, Belluscio BA, Braun S, et al. Dystrophin Immunity after Gene Therapy for Duchenne’s Muscular Dystrophy. N Engl J Med 2023; 388 (24): 2294–2296. [CrossRef] [PubMed] [Google Scholar]
  19. Tabebordbar M, Lagerborg KA, Stanton A, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 2021; 184 (19): 4919–4938.e22. [CrossRef] [PubMed] [Google Scholar]
  20. Hong AV, Suel L, Poupiot J, et al. An integrin-targeting AAV developed using a novel computational rational design methodology presents improved targeting of the skeletal muscle and reduced liver tropism. Preprint Hal-04310212 2023. [Google Scholar]
  21. Lai Y, Yue Y, Liu M, et al. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 2005; 23 (11): 1435–1439. [CrossRef] [PubMed] [Google Scholar]
  22. Albini S, Palmieri L, Dubois A, et al. Assessment of Therapeutic Potential of a Dual AAV Approach for Duchenne Muscular Dystrophy. Int J Mol Sci 2023; 24 (14): 11421. [CrossRef] [PubMed] [Google Scholar]
  23. Tasfaout H, Halbert CL, McMillen TS, et al. Split intein-mediated protein trans-splicing to express large dystrophins. Nature 2024; 632 (8023): 192–200. [CrossRef] [PubMed] [Google Scholar]
  24. Abmayr S, Gregorevic P, Allen JM, et al. Phenotypic Improvement of Dystrophic Muscles by rAAV/Microdystrophin Vectors Is Augmented by Igf1 Codelivery. Mol Ther 2005; 12 (3): 441–450. [CrossRef] [PubMed] [Google Scholar]
  25. Heller KN, Mendell JT, Mendell JR, et al. MicroRNA-29 overexpression by adeno-associated virus suppresses fibrosis and restores muscle function in combination with micro-dystrophin. JCI Insight 2017; 2 (9) [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.