Free Access
Issue
Med Sci (Paris)
Volume 40, Novembre 2024
Les Cahiers de Myologie
Page(s) 34 - 39
Section Prix SFM
DOI https://doi.org/10.1051/medsci/2024130
Published online 18 November 2024
  1. Jungbluth H, Wallgren-Pettersson C, Laporte J. Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 2008 ; 3 : 26. [CrossRef] [PubMed] [Google Scholar]
  2. Romero NB. Centronuclear myopathies: a widening concept. Neuromuscul Dis 2010 ; 20 : 223–228. [CrossRef] [Google Scholar]
  3. Laporte J, Hu LJ, Kretz C, et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 1996 ; 13 : 175–182. [Google Scholar]
  4. Jungbluth H, Treves S, Zorzato F, et al. Congenital myopathies: disorders of excitation-contraction coupling and muscle contraction. Nat Rev Neurol 2018 ; 14 : 151–167. [CrossRef] [PubMed] [Google Scholar]
  5. Bitoun M, Bevilacqua JA, Prudhon B, et al. Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurol 2007 ; 62 : 666–670. [CrossRef] [PubMed] [Google Scholar]
  6. Bitoun M, Maugenre S, Jeannet PY, et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 2005 ; 37 : 1207–1209. [CrossRef] [PubMed] [Google Scholar]
  7. Bohm J, Biancalana V, Dechene ET, et al. Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy. Hum Mut 2012 ; 33 : 949–959. [CrossRef] [Google Scholar]
  8. Bohm J, Biancalana V, Malfatti E, et al. Adult-onset autosomal dominant centronuclear myopathy due to BIN1 mutations. Brain 2014 ; 137 : 3160–3170. [CrossRef] [PubMed] [Google Scholar]
  9. Nicot AS, Toussaint A, Tosch V, et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 2007 ; 39 : 1134–1139. [CrossRef] [PubMed] [Google Scholar]
  10. Bevilacqua JA, Monnier N, Bitoun M, et al. Recessive RYR1 mutations cause unusual congenital myopathy with prominent nuclear internalization and large areas of myofibrillar disorganization. Neuropathol Appl Neurobiol 2011 ; 37 : 271–284. [CrossRef] [PubMed] [Google Scholar]
  11. Wilmshurst JM, Lillis S, Zhou H, et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol 2010 ; 68 : 717–726. [CrossRef] [PubMed] [Google Scholar]
  12. Jordan VC. Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov 2003 ; 2 : 205–213. [CrossRef] [PubMed] [Google Scholar]
  13. Buj-Bello A, Laugel V, Messaddeq N, et al. The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. PNAS 2002 ; 99 : 15060–15065. [CrossRef] [PubMed] [Google Scholar]
  14. Massana Munoz X, Kretz C, Silva-Rojas R, et al. Physiological impact and disease reversion for the severe form of centronuclear myopathy linked to dynamin. JCI Insight 2020 ; 5 : e137899. [CrossRef] [PubMed] [Google Scholar]
  15. Silva-Rojas R, Nattarayan V, Jaque-Fernandez F, et al. Mice with muscle-specific deletion of Bin1 recapitulate centronuclear myopathy and acute downregulation of dynamin 2 improves their phenotypes. Mol Ther 2022 ; 30 : 868–880. [CrossRef] [PubMed] [Google Scholar]
  16. Gayi E, Neff LA, Massana Muñoz X, et al. Tamoxifen prolongs survival and alleviates symptoms in mice with fatal X-linked myotubular myopathy. Nat Com 2018 ; 9 : 4848. [CrossRef] [Google Scholar]
  17. Gineste C, Simon A, Braun M, et al. Tamoxifen improves muscle structure and function of Bin1- and Dnm2-related centronuclear myopathies. Brain 2023 ; 146 : 3029–3048. [CrossRef] [PubMed] [Google Scholar]
  18. Dorchies OM, Reutenauer-Patte J, Dahmane E, et al. The anticancer drug tamoxifen counteracts the pathology in a mouse model of duchenne muscular dystrophy. Am J Pathol 2013 ; 182 : 485–504. [CrossRef] [PubMed] [Google Scholar]
  19. Kutchukian C, Lo Scrudato M, Tourneur Y, et al. Phosphatidylinositol 3-kinase inhibition restores Ca2+ release defects and prolongs survival in myotubularin-deficient mice. PNAS 2016 ; 113 : 14432–14437. [CrossRef] [PubMed] [Google Scholar]
  20. Al-Qusairi L, Weiss N, Toussaint A, et al. T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. PNAS 2009 ; 106 : 18763–18768. [CrossRef] [PubMed] [Google Scholar]
  21. Cowling BS, Chevremont T, Prokic I, et al. Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. JCI 2014 ; 124 : 1350–1363. [CrossRef] [PubMed] [Google Scholar]
  22. Cowling BS, Toussaint A, Amoasii L, et al. Increased expression of wild-type or a centronuclear myopathy mutant of dynamin 2 in skeletal muscle of adult mice leads to structural defects and muscle weakness. Am J Pathol 2011 ; 178 : 2224–2235. [CrossRef] [PubMed] [Google Scholar]
  23. Maani N, Sabha N, Rezai K, et al. Tamoxifen therapy in a murine model of myotubular myopathy. Nat Com 2018 ; 9 : 4849. [CrossRef] [Google Scholar]
  24. Blondelle J, Tallapaka K, Seto JT, et al. Cullin-3 dependent deregulation of ACTN1 represents a new pathogenic mechanism in nemaline myopathy. JCI Insight 2019 ; 5 : e125665. [CrossRef] [Google Scholar]
  25. Mansur A, Joseph R, Kim ES, et al. Dynamic regulation of inter-organelle communication by ubiquitylation controls skeletal muscle development and disease onset. Elife 2023 ; 12 : e81966. [CrossRef] [PubMed] [Google Scholar]
  26. Milner DJ, Mavroidis M, Weisleder N, et al. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 2000 ; 150 : 1283–1296. [CrossRef] [PubMed] [Google Scholar]
  27. Ralston E, Lu Z, Biscocho N, et al. Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers. J Cell Physiol 2006 ; 209 : 874–882. [CrossRef] [PubMed] [Google Scholar]
  28. Hnia K, Tronchere H, Tomczak KK, et al. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. JCI 2011 ; 121 : 70–85. [CrossRef] [PubMed] [Google Scholar]
  29. Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol 2019 ; 116 : 135–170. [CrossRef] [PubMed] [Google Scholar]
  30. Djeddi S, Reiss D, Menuet A, et al. Multi-omics comparisons of different forms of centronuclear myopathies and the effects of several therapeutic strategies. Mol Ther 2021 ; 29 : 2514–2534. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.