Accès gratuit
Numéro |
Med Sci (Paris)
Volume 40, Novembre 2024
Les Cahiers de Myologie
|
|
---|---|---|
Page(s) | 34 - 39 | |
Section | Prix SFM | |
DOI | https://doi.org/10.1051/medsci/2024130 | |
Publié en ligne | 18 novembre 2024 |
- Jungbluth H, Wallgren-Pettersson C, Laporte J. Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 2008 ; 3 : 26. [CrossRef] [PubMed] [Google Scholar]
- Romero NB. Centronuclear myopathies: a widening concept. Neuromuscul Dis 2010 ; 20 : 223–228. [CrossRef] [Google Scholar]
- Laporte J, Hu LJ, Kretz C, et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 1996 ; 13 : 175–182. [Google Scholar]
- Jungbluth H, Treves S, Zorzato F, et al. Congenital myopathies: disorders of excitation-contraction coupling and muscle contraction. Nat Rev Neurol 2018 ; 14 : 151–167. [CrossRef] [PubMed] [Google Scholar]
- Bitoun M, Bevilacqua JA, Prudhon B, et al. Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurol 2007 ; 62 : 666–670. [CrossRef] [PubMed] [Google Scholar]
- Bitoun M, Maugenre S, Jeannet PY, et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 2005 ; 37 : 1207–1209. [CrossRef] [PubMed] [Google Scholar]
- Bohm J, Biancalana V, Dechene ET, et al. Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy. Hum Mut 2012 ; 33 : 949–959. [CrossRef] [Google Scholar]
- Bohm J, Biancalana V, Malfatti E, et al. Adult-onset autosomal dominant centronuclear myopathy due to BIN1 mutations. Brain 2014 ; 137 : 3160–3170. [CrossRef] [PubMed] [Google Scholar]
- Nicot AS, Toussaint A, Tosch V, et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 2007 ; 39 : 1134–1139. [CrossRef] [PubMed] [Google Scholar]
- Bevilacqua JA, Monnier N, Bitoun M, et al. Recessive RYR1 mutations cause unusual congenital myopathy with prominent nuclear internalization and large areas of myofibrillar disorganization. Neuropathol Appl Neurobiol 2011 ; 37 : 271–284. [CrossRef] [PubMed] [Google Scholar]
- Wilmshurst JM, Lillis S, Zhou H, et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann Neurol 2010 ; 68 : 717–726. [CrossRef] [PubMed] [Google Scholar]
- Jordan VC. Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov 2003 ; 2 : 205–213. [CrossRef] [PubMed] [Google Scholar]
- Buj-Bello A, Laugel V, Messaddeq N, et al. The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. PNAS 2002 ; 99 : 15060–15065. [CrossRef] [PubMed] [Google Scholar]
- Massana Munoz X, Kretz C, Silva-Rojas R, et al. Physiological impact and disease reversion for the severe form of centronuclear myopathy linked to dynamin. JCI Insight 2020 ; 5 : e137899. [CrossRef] [PubMed] [Google Scholar]
- Silva-Rojas R, Nattarayan V, Jaque-Fernandez F, et al. Mice with muscle-specific deletion of Bin1 recapitulate centronuclear myopathy and acute downregulation of dynamin 2 improves their phenotypes. Mol Ther 2022 ; 30 : 868–880. [CrossRef] [PubMed] [Google Scholar]
- Gayi E, Neff LA, Massana Muñoz X, et al. Tamoxifen prolongs survival and alleviates symptoms in mice with fatal X-linked myotubular myopathy. Nat Com 2018 ; 9 : 4848. [CrossRef] [Google Scholar]
- Gineste C, Simon A, Braun M, et al. Tamoxifen improves muscle structure and function of Bin1- and Dnm2-related centronuclear myopathies. Brain 2023 ; 146 : 3029–3048. [CrossRef] [PubMed] [Google Scholar]
- Dorchies OM, Reutenauer-Patte J, Dahmane E, et al. The anticancer drug tamoxifen counteracts the pathology in a mouse model of duchenne muscular dystrophy. Am J Pathol 2013 ; 182 : 485–504. [CrossRef] [PubMed] [Google Scholar]
- Kutchukian C, Lo Scrudato M, Tourneur Y, et al. Phosphatidylinositol 3-kinase inhibition restores Ca2+ release defects and prolongs survival in myotubularin-deficient mice. PNAS 2016 ; 113 : 14432–14437. [CrossRef] [PubMed] [Google Scholar]
- Al-Qusairi L, Weiss N, Toussaint A, et al. T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. PNAS 2009 ; 106 : 18763–18768. [CrossRef] [PubMed] [Google Scholar]
- Cowling BS, Chevremont T, Prokic I, et al. Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. JCI 2014 ; 124 : 1350–1363. [CrossRef] [PubMed] [Google Scholar]
- Cowling BS, Toussaint A, Amoasii L, et al. Increased expression of wild-type or a centronuclear myopathy mutant of dynamin 2 in skeletal muscle of adult mice leads to structural defects and muscle weakness. Am J Pathol 2011 ; 178 : 2224–2235. [CrossRef] [PubMed] [Google Scholar]
- Maani N, Sabha N, Rezai K, et al. Tamoxifen therapy in a murine model of myotubular myopathy. Nat Com 2018 ; 9 : 4849. [CrossRef] [Google Scholar]
- Blondelle J, Tallapaka K, Seto JT, et al. Cullin-3 dependent deregulation of ACTN1 represents a new pathogenic mechanism in nemaline myopathy. JCI Insight 2019 ; 5 : e125665. [CrossRef] [Google Scholar]
- Mansur A, Joseph R, Kim ES, et al. Dynamic regulation of inter-organelle communication by ubiquitylation controls skeletal muscle development and disease onset. Elife 2023 ; 12 : e81966. [CrossRef] [PubMed] [Google Scholar]
- Milner DJ, Mavroidis M, Weisleder N, et al. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 2000 ; 150 : 1283–1296. [CrossRef] [PubMed] [Google Scholar]
- Ralston E, Lu Z, Biscocho N, et al. Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers. J Cell Physiol 2006 ; 209 : 874–882. [CrossRef] [PubMed] [Google Scholar]
- Hnia K, Tronchere H, Tomczak KK, et al. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. JCI 2011 ; 121 : 70–85. [CrossRef] [PubMed] [Google Scholar]
- Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol 2019 ; 116 : 135–170. [CrossRef] [PubMed] [Google Scholar]
- Djeddi S, Reiss D, Menuet A, et al. Multi-omics comparisons of different forms of centronuclear myopathies and the effects of several therapeutic strategies. Mol Ther 2021 ; 29 : 2514–2534. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.