Organoïdes
Open Access
Issue
Med Sci (Paris)
Volume 40, Number 8-9, Août-Septembre 2024
Organoïdes
Page(s) 643 - 652
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024100
Published online 20 September 2024
  1. Schule R, Timmann D, Erasmus CE et al. Solving unsolved rare neurological diseases-a Solve-RD viewpoint. Eur J Hum Genet 2021 ; 29 : 1332–6. [CrossRef] [PubMed] [Google Scholar]
  2. Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007 ; 131 : 861–72. [CrossRef] [PubMed] [Google Scholar]
  3. Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mol Biol 2013 ; 997 : 23–33. [CrossRef] [PubMed] [Google Scholar]
  4. Kieffer E, Kuntz S, Viville S. Tour d’horizon des lignées de cellules souches pluripotentes Med Sci (Paris) 2010 ; 26 : 848–54. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Itskovitz-Eldor J, Schuldiner M, Karsenti D et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 2000 ; 6 : 88–95. [CrossRef] [PubMed] [Google Scholar]
  6. Chneiweiss H, Dubart-Kupperschmitt A, Duclos-Vallee JC, et al. Pour une bonne compréhension et un bon usage du terme « organoïdes ». Med Sci (Paris) 2023 ; 39 : 876–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 2008 ; 3 : 519–32. [CrossRef] [PubMed] [Google Scholar]
  8. Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 2014 ; 9 : 2329–40. [CrossRef] [PubMed] [Google Scholar]
  9. Eichmuller OL, Knoblich JA. Human cerebral organoids – a new tool for clinical neurology research. Nat Rev Neurol 2022 ; 18 : 661–80. [CrossRef] [PubMed] [Google Scholar]
  10. Acharya P, Choi NY, Shrestha S, et al. Brain organoids: A revolutionary tool for modeling neurological disorders and development of therapeutics. Biotechnol Bioeng 2024 ; 121 : 489–506. [CrossRef] [PubMed] [Google Scholar]
  11. Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids. Nature 2017 ; 545 : 54–9. [CrossRef] [PubMed] [Google Scholar]
  12. Bagley JA, Reumann D, Bian S, et al. Fused cerebral organoids model interactions between brain regions. Nat Methods 2017 ; 14 : 743–51. [CrossRef] [PubMed] [Google Scholar]
  13. Andersen J, Revah O, Miura Y, et al. Generation of Functional Human 3D Cortico-Motor Assembloids. Cell 2020 ; 183 : 1913-29 e26. [CrossRef] [PubMed] [Google Scholar]
  14. Krenn V, Bosone C, Burkard TR, et al. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell 2021 ; 28 : 1362-79 e7. [CrossRef] [PubMed] [Google Scholar]
  15. Ramani A, Muller L, Ostermann PN, et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 2020 ; 39 : e106230. [CrossRef] [PubMed] [Google Scholar]
  16. Xu R, Brawner AT, Li S, et al. OLIG2 Drives Abnormal Neurodevelopmental Phenotypes in Human iPSC-Based Organoid and Chimeric Mouse Models of Down Syndrome. Cell Stem Cell 2019 ; 24 : 908-26 e8. [CrossRef] [PubMed] [Google Scholar]
  17. Kang Y, Zhou Y, Li Y, et al. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat Neurosci 2021 ; 24 : 1377–91. [CrossRef] [PubMed] [Google Scholar]
  18. Khan TA, Revah O, Gordon A, et al. Neuronal defects in a human cellular model of 22q11.2 deletion syndrome. Nat Med 2020 ; 26 : 1888–98. [CrossRef] [PubMed] [Google Scholar]
  19. Papes F, Camargo AP, de Souza JS, et al. Transcription Factor 4 loss-of-function is associated with deficits in progenitor proliferation and cortical neuron content. Nat Commun 2022 ; 13 : 2387. [CrossRef] [PubMed] [Google Scholar]
  20. Paulsen B, Velasco S, Kedaigle AJ, et al. Autism genes converge on asynchronous development of shared neuron classes. Nature 2022 ; 602 : 268–73. [CrossRef] [PubMed] [Google Scholar]
  21. Kim H, Park HJ, Choi H, et al. Modeling G2019S-LRRK2 Sporadic Parkinson’s Disease in 3D Midbrain Organoids. Stem Cell Reports 2019 ; 12 : 518–31. [CrossRef] [PubMed] [Google Scholar]
  22. Jo J, Yang L, Tran HD, et al. Lewy Body-like Inclusions in Human Midbrain Organoids Carrying Glucocerebrosidase and alpha-Synuclein Mutations. Ann Neurol 2021 ; 90 : 490–505. [CrossRef] [PubMed] [Google Scholar]
  23. Raja WK, Mungenast AE, Lin YT, et al. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer’s Disease Phenotypes. PLoS One 2016 ; 11 : e0161969. [CrossRef] [PubMed] [Google Scholar]
  24. Park JC, Jang SY, Lee D, et al. A logical network-based drug-screening platform for Alzheimer’s disease representing pathological features of human brain organoids. Nat Commun 2021 ; 12 : 280. [CrossRef] [PubMed] [Google Scholar]
  25. Krieger TG, Tirier SM, Park J, et al. Modeling glioblastoma invasion using human brain organoids and single-cell transcriptomics. Neuro Oncol 2020 ; 22 : 1138–49. [CrossRef] [PubMed] [Google Scholar]
  26. Ogawa J, Pao GM, Shokhirev MN, et al. Glioblastoma Model Using Human Cerebral Organoids. Cell Rep 2018 ; 23 : 1220–9. [CrossRef] [PubMed] [Google Scholar]
  27. Srikanth P, Lagomarsino VN, Muratore CR, et al. Shared effects of DISC1 disruption and elevated WNT signaling in human cerebral organoids. Transl Psychiatry 2018 ; 8 : 77. [CrossRef] [PubMed] [Google Scholar]
  28. Shou Y, Liang F, Xu S, et al. The Application of Brain Organoids: From Neuronal Development to Neurological Diseases. Front Cell Dev Biol 2020 ; 8 : 579659. [CrossRef] [PubMed] [Google Scholar]
  29. Marinho LSR, Chiarantin GMD, Ikebara JM, et al. The impact of antidepressants on human neurodevelopment: Brain organoids as experimental tools. Semin Cell Dev Biol 2023 ; 144 : 67–76. [CrossRef] [PubMed] [Google Scholar]
  30. Fan P, Wang Y, Xu M, et al. The Application of Brain Organoids in Assessing Neural Toxicity. Front Mol Neurosci 2022 ; 15 : 799397. [CrossRef] [PubMed] [Google Scholar]
  31. Zhou Y, Song H, Ming GL. Genetics of human brain development. Nat Rev Genet 2024 ; 25 : 26–45. [CrossRef] [PubMed] [Google Scholar]
  32. Ormel PR, Vieira de Sa R, van Bodegraven EJ, et al. Microglia innately develop within cerebral organoids. Nat Commun 2018 ; 9 : 4167. [CrossRef] [PubMed] [Google Scholar]
  33. Ye B. Approaches to vascularizing human brain organoids. PLoS Biol 2023, 21 (5):e3002141. [CrossRef] [PubMed] [Google Scholar]
  34. Qian X, Su Y, Adam CD, et al. Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation. Cell Stem Cell 2020 ; 26 : 766-81 e9. [CrossRef] [PubMed] [Google Scholar]
  35. Giandomenico SL, Mierau SB, Gibbons GM, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci 2019 ; 22 : 669–79. [CrossRef] [PubMed] [Google Scholar]
  36. Dao L, You Z, Lu L, et al. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell 2024 ; 31 : 818–33. [CrossRef] [PubMed] [Google Scholar]
  37. Lavazza A, Massimini M. Cerebral organoids: ethical issues and consciousness assessment. J Med Ethics 2018; 44 : 606–10. [CrossRef] [PubMed] [Google Scholar]
  38. Koplin JJ, Savulescu J. Moral Limits of Brain Organoid Research. J Law Med Ethics 2019 ; 47 : 760–7. [CrossRef] [PubMed] [Google Scholar]
  39. Hyun I, Scharf-Deering JC, Lunshof JE. Ethical issues related to brain organoid research. Brain Res 2020 ; 1732 : 146653. [CrossRef] [PubMed] [Google Scholar]
  40. Boyd JL. Moral considerability of brain organoids from the perspective of computational architecture. Oxf Open Neurosci 2024 ; 3 : kvae004. [CrossRef] [Google Scholar]
  41. de Thonel A, Ahlskog JK, Daupin K, et al. CBP-HSF2 structural and functional interplay in Rubinstein-Taybi neurodevelopmental disorder. Nat Commun 2022 ; 13 : 7002. [CrossRef] [PubMed] [Google Scholar]
  42. Trujillo CA, Adams JW, Negraes PD, et al. Pharmacological reversal of synaptic and network pathology in human MECP2-KO neurons and cortical organoids. EMBO Mol Med 2021 ; 13 : e12523. [CrossRef] [PubMed] [Google Scholar]
  43. Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature 2013 ; 501 : 373–9. [CrossRef] [PubMed] [Google Scholar]
  44. Li Y, Muffat J, Omer A, et al. Induction of Expansion and Folding in Human Cerebral Organoids. Cell Stem Cell 2017 ; 20 : 385-96 e3. [CrossRef] [PubMed] [Google Scholar]
  45. Hillmann P, Fabbro D. PI3K/mTOR Pathway Inhibition: Opportunities in Oncology and Rare Genetic Diseases. Int J Mol Sci 2019 ; 20 : 5792. [CrossRef] [PubMed] [Google Scholar]
  46. Da Costa R, De Almeida S, Chevarin M, et al. Neutralization of HSF1 in cells from PIK3CA-related overgrowth spectrum patients blocks abnormal proliferation. Biochem Biophys Res Commun 2020 ; 530 : 520–6. [CrossRef] [PubMed] [Google Scholar]
  47. Chneiweiss H. Organoïdes : nouvelles perspectives et nouvelles questions éthiques. Med Sci (Paris) 2020 ; 36 : 99–100. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.