Organoïdes
Open Access
Numéro
Med Sci (Paris)
Volume 40, Numéro 8-9, Août-Septembre 2024
Organoïdes
Page(s) 643 - 652
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024100
Publié en ligne 20 septembre 2024
  1. Schule R, Timmann D, Erasmus CE et al. Solving unsolved rare neurological diseases-a Solve-RD viewpoint. Eur J Hum Genet 2021 ; 29 : 1332–6. [CrossRef] [PubMed] [Google Scholar]
  2. Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007 ; 131 : 861–72. [CrossRef] [PubMed] [Google Scholar]
  3. Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mol Biol 2013 ; 997 : 23–33. [CrossRef] [PubMed] [Google Scholar]
  4. Kieffer E, Kuntz S, Viville S. Tour d’horizon des lignées de cellules souches pluripotentes Med Sci (Paris) 2010 ; 26 : 848–54. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Itskovitz-Eldor J, Schuldiner M, Karsenti D et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 2000 ; 6 : 88–95. [CrossRef] [PubMed] [Google Scholar]
  6. Chneiweiss H, Dubart-Kupperschmitt A, Duclos-Vallee JC, et al. Pour une bonne compréhension et un bon usage du terme « organoïdes ». Med Sci (Paris) 2023 ; 39 : 876–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 2008 ; 3 : 519–32. [CrossRef] [PubMed] [Google Scholar]
  8. Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 2014 ; 9 : 2329–40. [CrossRef] [PubMed] [Google Scholar]
  9. Eichmuller OL, Knoblich JA. Human cerebral organoids – a new tool for clinical neurology research. Nat Rev Neurol 2022 ; 18 : 661–80. [CrossRef] [PubMed] [Google Scholar]
  10. Acharya P, Choi NY, Shrestha S, et al. Brain organoids: A revolutionary tool for modeling neurological disorders and development of therapeutics. Biotechnol Bioeng 2024 ; 121 : 489–506. [CrossRef] [PubMed] [Google Scholar]
  11. Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids. Nature 2017 ; 545 : 54–9. [CrossRef] [PubMed] [Google Scholar]
  12. Bagley JA, Reumann D, Bian S, et al. Fused cerebral organoids model interactions between brain regions. Nat Methods 2017 ; 14 : 743–51. [CrossRef] [PubMed] [Google Scholar]
  13. Andersen J, Revah O, Miura Y, et al. Generation of Functional Human 3D Cortico-Motor Assembloids. Cell 2020 ; 183 : 1913-29 e26. [CrossRef] [PubMed] [Google Scholar]
  14. Krenn V, Bosone C, Burkard TR, et al. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell 2021 ; 28 : 1362-79 e7. [CrossRef] [PubMed] [Google Scholar]
  15. Ramani A, Muller L, Ostermann PN, et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 2020 ; 39 : e106230. [CrossRef] [PubMed] [Google Scholar]
  16. Xu R, Brawner AT, Li S, et al. OLIG2 Drives Abnormal Neurodevelopmental Phenotypes in Human iPSC-Based Organoid and Chimeric Mouse Models of Down Syndrome. Cell Stem Cell 2019 ; 24 : 908-26 e8. [CrossRef] [PubMed] [Google Scholar]
  17. Kang Y, Zhou Y, Li Y, et al. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat Neurosci 2021 ; 24 : 1377–91. [CrossRef] [PubMed] [Google Scholar]
  18. Khan TA, Revah O, Gordon A, et al. Neuronal defects in a human cellular model of 22q11.2 deletion syndrome. Nat Med 2020 ; 26 : 1888–98. [CrossRef] [PubMed] [Google Scholar]
  19. Papes F, Camargo AP, de Souza JS, et al. Transcription Factor 4 loss-of-function is associated with deficits in progenitor proliferation and cortical neuron content. Nat Commun 2022 ; 13 : 2387. [CrossRef] [PubMed] [Google Scholar]
  20. Paulsen B, Velasco S, Kedaigle AJ, et al. Autism genes converge on asynchronous development of shared neuron classes. Nature 2022 ; 602 : 268–73. [CrossRef] [PubMed] [Google Scholar]
  21. Kim H, Park HJ, Choi H, et al. Modeling G2019S-LRRK2 Sporadic Parkinson’s Disease in 3D Midbrain Organoids. Stem Cell Reports 2019 ; 12 : 518–31. [CrossRef] [PubMed] [Google Scholar]
  22. Jo J, Yang L, Tran HD, et al. Lewy Body-like Inclusions in Human Midbrain Organoids Carrying Glucocerebrosidase and alpha-Synuclein Mutations. Ann Neurol 2021 ; 90 : 490–505. [CrossRef] [PubMed] [Google Scholar]
  23. Raja WK, Mungenast AE, Lin YT, et al. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer’s Disease Phenotypes. PLoS One 2016 ; 11 : e0161969. [CrossRef] [PubMed] [Google Scholar]
  24. Park JC, Jang SY, Lee D, et al. A logical network-based drug-screening platform for Alzheimer’s disease representing pathological features of human brain organoids. Nat Commun 2021 ; 12 : 280. [CrossRef] [PubMed] [Google Scholar]
  25. Krieger TG, Tirier SM, Park J, et al. Modeling glioblastoma invasion using human brain organoids and single-cell transcriptomics. Neuro Oncol 2020 ; 22 : 1138–49. [CrossRef] [PubMed] [Google Scholar]
  26. Ogawa J, Pao GM, Shokhirev MN, et al. Glioblastoma Model Using Human Cerebral Organoids. Cell Rep 2018 ; 23 : 1220–9. [CrossRef] [PubMed] [Google Scholar]
  27. Srikanth P, Lagomarsino VN, Muratore CR, et al. Shared effects of DISC1 disruption and elevated WNT signaling in human cerebral organoids. Transl Psychiatry 2018 ; 8 : 77. [CrossRef] [PubMed] [Google Scholar]
  28. Shou Y, Liang F, Xu S, et al. The Application of Brain Organoids: From Neuronal Development to Neurological Diseases. Front Cell Dev Biol 2020 ; 8 : 579659. [CrossRef] [PubMed] [Google Scholar]
  29. Marinho LSR, Chiarantin GMD, Ikebara JM, et al. The impact of antidepressants on human neurodevelopment: Brain organoids as experimental tools. Semin Cell Dev Biol 2023 ; 144 : 67–76. [CrossRef] [PubMed] [Google Scholar]
  30. Fan P, Wang Y, Xu M, et al. The Application of Brain Organoids in Assessing Neural Toxicity. Front Mol Neurosci 2022 ; 15 : 799397. [CrossRef] [PubMed] [Google Scholar]
  31. Zhou Y, Song H, Ming GL. Genetics of human brain development. Nat Rev Genet 2024 ; 25 : 26–45. [CrossRef] [PubMed] [Google Scholar]
  32. Ormel PR, Vieira de Sa R, van Bodegraven EJ, et al. Microglia innately develop within cerebral organoids. Nat Commun 2018 ; 9 : 4167. [CrossRef] [PubMed] [Google Scholar]
  33. Ye B. Approaches to vascularizing human brain organoids. PLoS Biol 2023, 21 (5):e3002141. [CrossRef] [PubMed] [Google Scholar]
  34. Qian X, Su Y, Adam CD, et al. Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation. Cell Stem Cell 2020 ; 26 : 766-81 e9. [CrossRef] [PubMed] [Google Scholar]
  35. Giandomenico SL, Mierau SB, Gibbons GM, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci 2019 ; 22 : 669–79. [CrossRef] [PubMed] [Google Scholar]
  36. Dao L, You Z, Lu L, et al. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids. Cell Stem Cell 2024 ; 31 : 818–33. [CrossRef] [PubMed] [Google Scholar]
  37. Lavazza A, Massimini M. Cerebral organoids: ethical issues and consciousness assessment. J Med Ethics 2018; 44 : 606–10. [CrossRef] [PubMed] [Google Scholar]
  38. Koplin JJ, Savulescu J. Moral Limits of Brain Organoid Research. J Law Med Ethics 2019 ; 47 : 760–7. [CrossRef] [PubMed] [Google Scholar]
  39. Hyun I, Scharf-Deering JC, Lunshof JE. Ethical issues related to brain organoid research. Brain Res 2020 ; 1732 : 146653. [CrossRef] [PubMed] [Google Scholar]
  40. Boyd JL. Moral considerability of brain organoids from the perspective of computational architecture. Oxf Open Neurosci 2024 ; 3 : kvae004. [CrossRef] [Google Scholar]
  41. de Thonel A, Ahlskog JK, Daupin K, et al. CBP-HSF2 structural and functional interplay in Rubinstein-Taybi neurodevelopmental disorder. Nat Commun 2022 ; 13 : 7002. [CrossRef] [PubMed] [Google Scholar]
  42. Trujillo CA, Adams JW, Negraes PD, et al. Pharmacological reversal of synaptic and network pathology in human MECP2-KO neurons and cortical organoids. EMBO Mol Med 2021 ; 13 : e12523. [CrossRef] [PubMed] [Google Scholar]
  43. Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature 2013 ; 501 : 373–9. [CrossRef] [PubMed] [Google Scholar]
  44. Li Y, Muffat J, Omer A, et al. Induction of Expansion and Folding in Human Cerebral Organoids. Cell Stem Cell 2017 ; 20 : 385-96 e3. [CrossRef] [PubMed] [Google Scholar]
  45. Hillmann P, Fabbro D. PI3K/mTOR Pathway Inhibition: Opportunities in Oncology and Rare Genetic Diseases. Int J Mol Sci 2019 ; 20 : 5792. [CrossRef] [PubMed] [Google Scholar]
  46. Da Costa R, De Almeida S, Chevarin M, et al. Neutralization of HSF1 in cells from PIK3CA-related overgrowth spectrum patients blocks abnormal proliferation. Biochem Biophys Res Commun 2020 ; 530 : 520–6. [CrossRef] [PubMed] [Google Scholar]
  47. Chneiweiss H. Organoïdes : nouvelles perspectives et nouvelles questions éthiques. Med Sci (Paris) 2020 ; 36 : 99–100. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.