Open Access
Issue |
Med Sci (Paris)
Volume 40, Number 8-9, Août-Septembre 2024
|
|
---|---|---|
Page(s) | 627 - 633 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2024095 | |
Published online | 20 September 2024 |
- Stévant I, Papaioannou MD, Nef S. A brief history of sex determination. Mol Cell Endocrinol 2018; 468 : 3–10. [CrossRef] [PubMed] [Google Scholar]
- Ford CE, Polani PE, Briggs JH, Bishop PMF. A Presumptive Human XXY/XX Mosaic. Nature 1959; 183 : 1030–2. [CrossRef] [PubMed] [Google Scholar]
- Terao M, Ogawa Y, Takada S, et al. Turnover of mammal sex chromosomes in the Sry-deficient Amami spiny rat is due to male-specific upregulation of Sox9. Proc Natl Acad Sci USA 2022; 119 : e2211574119. [CrossRef] [PubMed] [Google Scholar]
- Zhao F, Yao HH-C. A tale of two tracts: history, current advances, and future directions of research on sexual differentiation of reproductive tracts. Biol Reprod 2019; 101 : 602–16. [CrossRef] [Google Scholar]
- Josso N. Professor Alfred Jost: the builder of modern sex differentiation. Sex Dev 2008; 2 : 55–63. [CrossRef] [PubMed] [Google Scholar]
- Jost A. Genetic and hormonal factors in sex differentiation of the brain. Psychoneuroendocrinology 1983; 8 : 183–93. [CrossRef] [PubMed] [Google Scholar]
- Gubbay J, Collignon J, Koopman P, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 1990; 346 : 245–50. [CrossRef] [PubMed] [Google Scholar]
- Sinclair AH, Berta P, Palmer MS, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990; 346 : 240–4. [CrossRef] [PubMed] [Google Scholar]
- Berta P, Hawkins JB, Sinclair AH, et al. Genetic evidence equating SRY and the testis-determining factor. Nature 1990; 348 : 448–50. [CrossRef] [PubMed] [Google Scholar]
- Koopman P, Gubbay J, Vivian N, et al. Male development of chromosomally female mice transgenic for Sry. Nature 1991; 351 : 117–21. [CrossRef] [PubMed] [Google Scholar]
- Eicher EM, Washburn LL. Inherited sex reversal in mice: identification of a new primary sex-determining gene. J Exp Zool 1983; 228 : 297–304. [CrossRef] [PubMed] [Google Scholar]
- Lavery R, Lardenois A, Ranc-Jianmotamedi F, et al. XY Sox9 embryonic loss-of-function mouse mutants show complete sex reversal and produce partially fertile XY oocytes. Dev Biol 2011 ; 354 : 111–22. [CrossRef] [PubMed] [Google Scholar]
- Miyawaki S, Kuroki S, Maeda R, et al. The mouse Sry locus harbors a cryptic exon that is essential for male sex determination. Science 2020; 370 : 121–4. [CrossRef] [PubMed] [Google Scholar]
- Hughes IA, Houk C, Ahmed SF, et al. Consensus statement on management of intersex disorders. Arch Dis Child 2006 ; 91 : 554–63. [Google Scholar]
- Eggers S, Sadedin S, van den Bergen JA, et al. Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biol 2016 ; 17 : 243. [CrossRef] [PubMed] [Google Scholar]
- Bashamboo A, McElreavey K. Mechanism of Sex Determination in Humans: Insights from Disorders of Sex Development. Sex Dev 2016 ; 10 : 313–25. [CrossRef] [PubMed] [Google Scholar]
- Délot EC, Vilain E. Towards improved genetic diagnosis of human differences of sex development. Nat Rev Genet 2021 ; 22 : 588–602. [CrossRef] [PubMed] [Google Scholar]
- Nef S, Stévant I, Greenfield A. Characterizing the bipotential mammalian gonad. Curr Top Dev Biol 2019 ; 134 : 167–94. [CrossRef] [PubMed] [Google Scholar]
- Gonen N, Futtner CR, Wood S, et al. Sex reversal following deletion of a single distal enhancer of Sox9. Science 2018 ; 360 : 1469–73. [CrossRef] [PubMed] [Google Scholar]
- Chaboissier M-C, Kobayashi A, Vidal VIP, et al. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 2004 ; 131 : 1891–901. [CrossRef] [PubMed] [Google Scholar]
- Gregoire EP, Stevant I, Chassot AA, et al. NRG1 signalling regulates the establishment of Sertoli cell stock in the mouse testis. Mol Cell Endocrinol 2018 ; 478 : 17–31. [CrossRef] [PubMed] [Google Scholar]
- Stévant I, Kühne F, Greenfield A, et al. Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic Cells Using Single-Cell Transcriptomics. Cell Rep 2019 ; 26 : 3272–83. [CrossRef] [PubMed] [Google Scholar]
- Harikae K, Miura K, Shinomura M, et al. Heterogeneity in sexual bipotentiality and plasticity of granulosa cells in developing mouse ovaries. J Cell Sci 2013 ; 126 : 2834–44. [PubMed] [Google Scholar]
- Chassot AA, Ranc F, Gregoire EP, et al. Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum Mol Genet 2008 ; 17 : 1264–77. [CrossRef] [PubMed] [Google Scholar]
- Crisponi L, Deiana M, Loi A, et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 2001 ; 27 : 159–66. [CrossRef] [PubMed] [Google Scholar]
- Schmidt D, Ovitt CE, Anlag K, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 2004 ; 131 : 933–42. [CrossRef] [PubMed] [Google Scholar]
- Parma P, Radi O, Vidal V, et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 2006 ; 38 : 1304–9. [CrossRef] [PubMed] [Google Scholar]
- Mandel H, Shemer R, Borochowitz ZU, et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am J Hum Genet 2008 ; 82 : 39–47. [CrossRef] [PubMed] [Google Scholar]
- Chassot AA, Bradford ST, Auguste A, et al. WNT4 and RSPO1 together are required for cell proliferation in the early mouse gonad. Development 2012 ; 139 : 4461–72. [CrossRef] [PubMed] [Google Scholar]
- Maatouk DM, Mork L, Chassot AA, et al. Disruption of mitotic arrest precedes precocious differentiation and transdifferentiation of pregranulosa cells in the perinatal Wnt4 mutant ovary. Dev Biol 2013 ; 383 : 295–306. [CrossRef] [PubMed] [Google Scholar]
- Tang F, Richardson N, Albina A, et al. Mouse Gonad Development in the Absence of the Pro-Ovary Factor WNT4 and the Pro-Testis Factor SOX9. Cells 2020 ; 9. [PubMed] [Google Scholar]
- Haber DA, Buckler AJ, Glaser T, et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms’ tumor. Cell 1990 ; 61 : 1257–69. [CrossRef] [PubMed] [Google Scholar]
- Hastie ND. Wilms’ tumour 1 (WT1) in development, homeostasis and disease. Development 2017 ; 144 : 2862–72. [CrossRef] [PubMed] [Google Scholar]
- Barbaux S, Niaudet P, Gubler MC, et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997 ; 17 : 467–70. [CrossRef] [PubMed] [Google Scholar]
- Kent J, Coriat AM, Sharpe PT, et al. The evolution of WT1 sequence and expression pattern in the vertebrates. Oncogene 1995 ; 11 : 1781–92. [PubMed] [Google Scholar]
- Hammes A, Guo JK, Lutsch G, et al. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 2001 ; 106 : 319–29. [CrossRef] [PubMed] [Google Scholar]
- Gregoire EP, De Cian MC, Migale R, et al. The – KTS splice variant of WT1 is essential for ovarian determination in mice. Science 2023 ; 382 : 600–6. [CrossRef] [PubMed] [Google Scholar]
- Rhen T, Fagerlie R, Schroeder A, et al. Molecular and morphological differentiation of testes and ovaries in relation to the thermosensitive period of gonad development in the snapping turtle, Chelydra serpentina. Differentiation 2015 ; 89 : 31–41. [CrossRef] [PubMed] [Google Scholar]
- Eicher EM, Washburn LL. Genetic control of primary sex determination in mice. Annu Rev Genet 1986 ; 20 : 327–60. [CrossRef] [PubMed] [Google Scholar]
- Nagahama Y, Chakraborty T, Paul-Prasanth B, et al. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2021 ; 101 : 1237–308. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.