Med Sci (Paris)
Volume 40, Number 6-7, Juin-Juillet 2024
Nos jeunes pousses ont du talent !
Page(s) 569 - 572
Section Partenariat médecine/sciences - Écoles doctorales - Masters
Published online 08 July 2024
  1. Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer : Global statistics for 2020 and 2040. Breast 2022; 66 : 15–23. [CrossRef] [PubMed] [Google Scholar]
  2. Guiu S, Michiels S, Andre F, et al. Molecular subclasses of breast cancer : how do we define them? The IMPAKT 2012 Working Group Statement. Ann Oncol 2012 ; 23 : 2997–3006. [CrossRef] [PubMed] [Google Scholar]
  3. Rivas EI, Linares J, Zwick M, et al. Targeted immunotherapy against distinct cancer-associated fibroblasts overcomes treatment resistance in refractory HER2+ breast tumors. Nat Commun 2022; 13 : 5310. [CrossRef] [PubMed] [Google Scholar]
  4. Valabrega G, Montemurro F, Aglietta M. Trastuzumab : mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol 2007 ; 18 : 977–984. [CrossRef] [PubMed] [Google Scholar]
  5. Kunte S, Abraham J, Montero AJ. Novel HER2-targeted therapies for HER2-positive metastatic breast cancer. Cancer 2020; 126 : 4278–88. [CrossRef] [PubMed] [Google Scholar]
  6. McKeage K, Perry CM. Trastuzumab : a review of its use in the treatment of metastatic breast cancer overexpressing HER2. Drugs 2002 ; 62 : 209–243. [CrossRef] [PubMed] [Google Scholar]
  7. Ahmed S, Sami A, Xiang J. HER2-directed therapy : current treatment options for HER2-positive breast cancer. Breast Cancer 2015 ; 22 : 101–116. [CrossRef] [PubMed] [Google Scholar]
  8. Watanabe S, Yonesaka K, Tanizaki J, et al. Targeting of the HER2/HER3 signaling axis overcomes ligand-mediated resistance to trastuzumab in HER2-positive breast cancer. Cancer Med 2019 ; 8 : 1258–1268. [CrossRef] [PubMed] [Google Scholar]
  9. Sonnenblick A, Salmon-Divon M, Salgado R, et al. Reactive stroma and trastuzumab resistance in HER2-positive early breast cancer. Int J Cancer 2020; 147 : 266–76. [CrossRef] [PubMed] [Google Scholar]
  10. Friedman G, Levi-Galibov O, David E, et al. Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4(+) and PDPN(+) CAFs to clinical outcome. Nat Cancer 2020; 1 : 692–708. [CrossRef] [PubMed] [Google Scholar]
  11. Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell 2018 ; 33 : 463–79 e10. [CrossRef] [PubMed] [Google Scholar]
  12. Bonneau C, Elies A, Kieffer Y, et al. A subset of activated fibroblasts is associated with distant relapse in early luminal breast cancer. Breast Cancer Res 2020; 22 : 76. [CrossRef] [PubMed] [Google Scholar]
  13. Wu F, Yang J, Liu J, et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6 : 218. [CrossRef] [PubMed] [Google Scholar]
  14. Pelon F, Bourachot B, Kieffer Y, et al. Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat Commun 2020; 11 : 404. [CrossRef] [PubMed] [Google Scholar]
  15. Pol JG, Caudana P, Paillet J, et al. Effects of interleukin-2 in immunostimulation and immunosuppression. J Exp Med 2020; 217. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.