Accès gratuit
Numéro |
Med Sci (Paris)
Volume 40, Numéro 6-7, Juin-Juillet 2024
Nos jeunes pousses ont du talent !
|
|
---|---|---|
Page(s) | 569 - 572 | |
Section | Partenariat médecine/sciences - Écoles doctorales - Masters | |
DOI | https://doi.org/10.1051/medsci/2024072 | |
Publié en ligne | 8 juillet 2024 |
- Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer : Global statistics for 2020 and 2040. Breast 2022; 66 : 15–23. [CrossRef] [PubMed] [Google Scholar]
- Guiu S, Michiels S, Andre F, et al. Molecular subclasses of breast cancer : how do we define them? The IMPAKT 2012 Working Group Statement. Ann Oncol 2012 ; 23 : 2997–3006. [CrossRef] [PubMed] [Google Scholar]
- Rivas EI, Linares J, Zwick M, et al. Targeted immunotherapy against distinct cancer-associated fibroblasts overcomes treatment resistance in refractory HER2+ breast tumors. Nat Commun 2022; 13 : 5310. [CrossRef] [PubMed] [Google Scholar]
- Valabrega G, Montemurro F, Aglietta M. Trastuzumab : mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol 2007 ; 18 : 977–984. [CrossRef] [PubMed] [Google Scholar]
- Kunte S, Abraham J, Montero AJ. Novel HER2-targeted therapies for HER2-positive metastatic breast cancer. Cancer 2020; 126 : 4278–88. [CrossRef] [PubMed] [Google Scholar]
- McKeage K, Perry CM. Trastuzumab : a review of its use in the treatment of metastatic breast cancer overexpressing HER2. Drugs 2002 ; 62 : 209–243. [CrossRef] [PubMed] [Google Scholar]
- Ahmed S, Sami A, Xiang J. HER2-directed therapy : current treatment options for HER2-positive breast cancer. Breast Cancer 2015 ; 22 : 101–116. [CrossRef] [PubMed] [Google Scholar]
- Watanabe S, Yonesaka K, Tanizaki J, et al. Targeting of the HER2/HER3 signaling axis overcomes ligand-mediated resistance to trastuzumab in HER2-positive breast cancer. Cancer Med 2019 ; 8 : 1258–1268. [CrossRef] [PubMed] [Google Scholar]
- Sonnenblick A, Salmon-Divon M, Salgado R, et al. Reactive stroma and trastuzumab resistance in HER2-positive early breast cancer. Int J Cancer 2020; 147 : 266–76. [CrossRef] [PubMed] [Google Scholar]
- Friedman G, Levi-Galibov O, David E, et al. Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4(+) and PDPN(+) CAFs to clinical outcome. Nat Cancer 2020; 1 : 692–708. [CrossRef] [PubMed] [Google Scholar]
- Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell 2018 ; 33 : 463–79 e10. [CrossRef] [PubMed] [Google Scholar]
- Bonneau C, Elies A, Kieffer Y, et al. A subset of activated fibroblasts is associated with distant relapse in early luminal breast cancer. Breast Cancer Res 2020; 22 : 76. [CrossRef] [PubMed] [Google Scholar]
- Wu F, Yang J, Liu J, et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6 : 218. [CrossRef] [PubMed] [Google Scholar]
- Pelon F, Bourachot B, Kieffer Y, et al. Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat Commun 2020; 11 : 404. [CrossRef] [PubMed] [Google Scholar]
- Pol JG, Caudana P, Paillet J, et al. Effects of interleukin-2 in immunostimulation and immunosuppression. J Exp Med 2020; 217. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.