Open Access
Issue
Med Sci (Paris)
Volume 40, Number 3, Mars 2024
Page(s) 258 - 267
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024014
Published online 22 March 2024
  1. Dehillotte C, Lemonnier L. Registre français de la mucoviscidose - Bilan des données 2022. 2023. [Google Scholar]
  2. Grasemann H, Ratjen F. Cystic Fibrosis. N Engl J Med 2023; 389 : 1693–707. [CrossRef] [PubMed] [Google Scholar]
  3. Varga K, Jurkuvenaite A, Wakefield J, et al. Efficient Intracellular Processing of the Endogenous Cystic Fibrosis Transmembrane Conductance Regulator in Epithelial Cell Lines. J Biol Chem 2004 ; 279(22): 578–584. [Google Scholar]
  4. Pranke IM, Sermet-Gaudelus I. Biosynthesis of cystic fibrosis transmembrane conductance regulator. Int J Biochem Cell Biol 2014 ; 52 : 26–38. [CrossRef] [PubMed] [Google Scholar]
  5. De Boeck K, Amaral MD. Progress in therapies for cystic fibrosis. Lancet Respir Med 2016 ; 4 : 662–674. [CrossRef] [PubMed] [Google Scholar]
  6. Billet A, Mornon J-P, Jollivet M, et al. CFTR : Effect of ICL2 and ICL4 amino acids in close spatial proximity on the current properties of the channel. J Cyst Fibros 2013 ; 12 : 737–745. [CrossRef] [PubMed] [Google Scholar]
  7. Simonin J, Bille E, Crambert G, et al. Author Correction : Airway surface liquid acidification initiates host defense abnormalities in Cystic Fibrosis. Sci Rep 2019 ; 9(17): 535. [CrossRef] [PubMed] [Google Scholar]
  8. Cantin AM, Hartl D, Konstan MW, et al. Inflammation in cystic fibrosis lung disease : Pathogenesis and therapy. J Cyst Fibros 2015 ; 14 : 419–430. [CrossRef] [PubMed] [Google Scholar]
  9. Lemke A.. Reproductive issues in adults with cystic fibrosis : Implications for genetic counseling. J Genet Couns 1992 ; 1 : 211–218. [CrossRef] [PubMed] [Google Scholar]
  10. Hodges CA, Palmert MR, Drumm ML. Infertility in Females with Cystic Fibrosis Is Multifactorial : Evidence from Mouse Models. Endocrinology 2008 ; 149(2): 790–797. [Google Scholar]
  11. Soya N, Xu H, Roldan A, et al. Folding correctors can restore CFTR posttranslational folding landscape by allosteric domain-domain coupling. bioRxiv 2023; 2023.10.19.563 107. [PubMed] [Google Scholar]
  12. Van Goor F, Hadida S, Grootenhuis PDJ, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA 2009 ; 106(18): 825–830. [Google Scholar]
  13. Eckford PDW, Li C, Ramjeesingh M, et al. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Potentiator VX-770 (Ivacaftor) Opens the Defective Channel Gate of Mutant CFTR in a Phosphorylation-dependent but ATP-independent Manner. J Biol Chem 2012 ; 287(36): 639–649. [Google Scholar]
  14. Ramsey BW, Bell SC, Wainwright CE, et al. A CFTR Potentiator in Patients with Cystic Fibrosis and the G551D Mutation. N Engl J Med 2011 ; 10 : [Google Scholar]
  15. Laselva O, Molinski S, Casavola V, et al. Correctors of the Major Cystic Fibrosis Mutant Interact through Membrane-Spanning Domains. Mol Pharmacol 2018 ; 93 : 612–618. [CrossRef] [PubMed] [Google Scholar]
  16. Boyle MP, Bell SC, Konstan MW, et al. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation : a phase 2 randomised controlled trial. Lancet Respir Med 2014 ; 2 : 527–538. [CrossRef] [PubMed] [Google Scholar]
  17. Walker S, Flume P, McNamara J, et al. A phase 3 study of tezacaftor in combination with ivacaftor in children aged 6 through 11 years with cystic fibrosis. J Cyst Fibros 2019 ; 18 : 708–713. [CrossRef] [PubMed] [Google Scholar]
  18. Veit G, Xu H, Dreano E, et al. Structure-guided combination therapy to potently improve the function of mutant CFTRs. Nat Med 2018 ; 24 : 1732–1742. [CrossRef] [PubMed] [Google Scholar]
  19. Heijerman HGM, McKone EF, Downey DG, et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation : a double-blind, randomised, phase 3 trial. Lancet 2019 ; 394 : 1940–1948. [CrossRef] [PubMed] [Google Scholar]
  20. Middleton PG, Mall MA, Dřevínek P, et al. Elexacaftor–Tezacaftor–Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N Engl J Med 2019 ; 381 : 1809–1819. [CrossRef] [PubMed] [Google Scholar]
  21. Mall MA, Brugha R, Gartner S, et al. Efficacy and Safety of Elexacaftor/Tezacaftor/Ivacaftor in Children 6 Through 11 Years of Age with Cystic Fibrosis Heterozygous for F508del and a Minimal Function Mutation : A Phase 3b, Randomized, Placebo-controlled Study. Am J Respir Crit Care Med 2022; 206 : 1361–9. [CrossRef] [PubMed] [Google Scholar]
  22. Goralski JL, Hoppe JE, Mall MA, et al. Phase 3 Open-Label Clinical Trial of Elexacaftor/Tezacaftor/Ivacaftor in Children Aged 2 Through 5 Years with Cystic Fibrosis and at Least One F508del Allele. Am J Respir Crit Care Med 2023; 208 : 59–67. [CrossRef] [PubMed] [Google Scholar]
  23. Uluer AZ, MacGregor G, Azevedo P, et al. Safety and efficacy of vanzacaftor-tezacaftor-deutivacaftor in adults with cystic fibrosis : randomised, double-blind, controlled, phase 2 trials. Lancet Respir Med 2023; 11 : 550–62. [CrossRef] [PubMed] [Google Scholar]
  24. Dougherty PG, Wellmerling JH, Koley A, et al. Cyclic Peptidyl Inhibitors against CAL/CFTR Interaction for Treatment of Cystic Fibrosis. J Med Chem 2020; 63 : 15773–84. [CrossRef] [PubMed] [Google Scholar]
  25. Fajac I, Sermet I. Therapeutic Approaches for Patients with Cystic Fibrosis Not Eligible for Current CFTR Modulators. Cells 2021; 10 : 2793. [CrossRef] [PubMed] [Google Scholar]
  26. Fajac I, Sermet-Gaudelus I. Emerging medicines to improve the basic defect in cystic fibrosis. Expert Opin Emerg Drugs 2022; 27 : 229–39. [CrossRef] [PubMed] [Google Scholar]
  27. Allan KM, Farrow N, Donnelley M, et al. Treatment of Cystic Fibrosis : From Gene- to Cell-Based Therapies. Front Pharmacol 2021; 12 : 639 475. [CrossRef] [Google Scholar]
  28. Cooney AL, McCray PB, Sinn PL. Cystic Fibrosis Gene Therapy : Looking Back. Looking Forward. Genes (Basel) 2018 ; 9 : 538. [CrossRef] [Google Scholar]
  29. Taylor-Cousar JL, Boyd AC, Alton EWFW, et al. Genetic therapies in cystic fibrosis. Curr Opin Pulm Med 2023; 29 : 615–20. [CrossRef] [PubMed] [Google Scholar]
  30. Griesenbach U, McLachlan G, Owaki T, et al. Validation of recombinant Sendai virus in a non-natural host model. Gene Ther 2011 ; 18 : 182–188. [CrossRef] [PubMed] [Google Scholar]
  31. Hodges CA, Conlon RA. Delivering on the promise of gene editing for cystic fibrosis. Genes Dis 2019 ; 6 : 97–108. [CrossRef] [PubMed] [Google Scholar]
  32. Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017 ; 551 : 464–471. [CrossRef] [PubMed] [Google Scholar]
  33. Berical A, Lee RE, Randell SH, et al. Challenges Facing Airway Epithelial Cell-Based Therapy for Cystic Fibrosis. Front Pharmacol 2019 ; 10 : 74. [CrossRef] [PubMed] [Google Scholar]
  34. Hayes D, Kopp BT, Hill CL, et al. Cell Therapy for Cystic Fibrosis Lung Disease : Regenerative Basal Cell Amplification. Stem Cells Transl Med 2019 ; 8 : 225–235. [CrossRef] [PubMed] [Google Scholar]
  35. Robinson E, MacDonald KD, Slaughter K, et al. Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis. Mol Ther 2018 ; 26(2): 034–046. [Google Scholar]
  36. Haque AKMA, Dewerth A, Antony JS, et al. Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis. Sci Rep 2018 ; 8(167): 76. [CrossRef] [PubMed] [Google Scholar]
  37. Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-Cas13. Science 2017 ; 358(1): 019–027. [CrossRef] [PubMed] [Google Scholar]
  38. Rowe SM, Zuckerman JB, Dorgan D, et al. Inhaled mRNA therapy for treatment of cystic fibrosis : Interim results of a randomized, double-blind, placebo-controlled phase 1/2 clinical study. J Cyst Fibros 2023; 22 : 656–64. [CrossRef] [PubMed] [Google Scholar]
  39. Wei T, Sun Y, Cheng Q, et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat Commun 2023; 14 : 7322. [CrossRef] [PubMed] [Google Scholar]
  40. Mort M, Ivanov D, Cooper DN, et al. A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 2008 ; 29(1): 037–047. [Google Scholar]
  41. Orenti A, Pranke I, Faucon C, et al. Nonsense mutations accelerate lung disease and decrease survival of cystic fibrosis children. J Cyst Fibros 2023; S1569–1993 (23) 00819–6. [PubMed] [Google Scholar]
  42. Sermet-Gaudelus I, Renouil M, Fajac A, et al. In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis : a pilot study. BMC Med 2007 ; 5 : 5. [CrossRef] [PubMed] [Google Scholar]
  43. Djumagulov M, Demeshkina N, Jenner L, et al. Accuracy mechanism of eukaryotic ribosome translocation. Nature 2021; 600 : 543–6. [CrossRef] [PubMed] [Google Scholar]
  44. Roy B, Leszyk JD, Mangus DA, et al. Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc Natl Acad Sci USA 2015 ; 112(3): 038–043. [Google Scholar]
  45. Pranke IM, Varilh J, Hatton A, et al. The U UGA C sequence provides a favorable context to ELX-02 induced CFTR readthrough. J Cyst Fibros 2023; 22 : 560–3. [CrossRef] [PubMed] [Google Scholar]
  46. Konstan MW, VanDevanter DR, Rowe SM, et al. Efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis not receiving chronic inhaled aminoglycosides : The international, randomized, double-blind, placebo-controlled Ataluren Confirmatory Trial in Cystic Fibrosis (ACT CF). J Cyst Fibros 2020; 19 : 595–601. [CrossRef] [PubMed] [Google Scholar]
  47. Albers S, Allen EC, Bharti N, et al. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 2023; 618 : 842–8. [CrossRef] [PubMed] [Google Scholar]
  48. Levin AA. Treating Disease at the RNA Level with Oligonucleotides. N Engl J Med 2019 ; 380 : 57–70. [CrossRef] [PubMed] [Google Scholar]
  49. Nissim-Rafinia M, Aviram M, Randell SH, et al. Restoration of the cystic fibrosis transmembrane conductance regulator function by splicing modulation. EMBO Rep 2004 ; 5(1): 071–077. [Google Scholar]
  50. Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med 2017 ; 377(1): 723–732. [Google Scholar]
  51. Michaels WE, Bridges RJ, Hastings ML. Antisense oligonucleotide-mediated correction of CFTR splicing improves chloride secretion in cystic fibrosis patient-derived bronchial epithelial cells. Nucleic Acids Res 2020; 48 : 7454–67. [PubMed] [Google Scholar]
  52. Oren YS, Irony-Tur Sinai M, Golec A, et al. Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3 849 + 10 kb C-to-T splicing mutation. J Cyst Fibros 2021; 20 : 865–75. [CrossRef] [PubMed] [Google Scholar]
  53. Igreja S, Clarke LA, Botelho HM, et al. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides. Hum Mutat 2016 ; 37 : 209–215. [CrossRef] [PubMed] [Google Scholar]
  54. Lopez A, Daly C, Vega-Hernandez G, et al. Elexacaftor/tezacaftor/ivacaftor projected survival and long-term health outcomes in people with cystic fibrosis homozygous for F508del. J Cyst Fibros 2023; 22 : 607–14. [CrossRef] [PubMed] [Google Scholar]
  55. Zampoli M, Morrow BM, Paul G. Real-world disparities and ethical considerations with access to CFTR modulator drugs : Mind the gap ! Front Pharmacol 2023; 14 : 1163 391. [CrossRef] [Google Scholar]
  56. Costa E, Girotti S, Pauro F, et al. The impact of FDA and EMA regulatory decision-making process on the access to CFTR modulators for the treatment of cystic fibrosis. Orphanet J Rare Dis 2022; 17 : 188. [CrossRef] [PubMed] [Google Scholar]
  57. Kerem E, Cohen-Cymberknoh M, Tsabari R, et al. Ivacaftor in People With Cystic Fibrosis and a 3 849+10kb C →T or D1152H Residual Function Mutation. Ann Am Thorac Soc 2021; 18 : 433–41. [CrossRef] [PubMed] [Google Scholar]
  58. Dreano E, Burgel PR, Hatton A, et al. Theratyping Cystic Fibrosis patients to guide Elexacaftor-Tezacaftor-Ivacaftor out of label prescription. Eur Respir J 2023; 62 : 2300 110. [Google Scholar]
  59. Dagenais R, Su V, Quon B. Real-World Safety of CFTR Modulators in the Treatment of Cystic Fibrosis : A Systematic Review. JCM 2020; 10 : 23. [CrossRef] [Google Scholar]
  60. Tewkesbury DH, Athwal V, Bright-Thomas RJ, et al. Longitudinal effects of elexacaftor/tezacaftor/ivacaftor on liver tests at a large single adult cystic fibrosis centre. J Cyst Fibros 2023; 22 : 256–62. [CrossRef] [PubMed] [Google Scholar]
  61. De Boeck K. Cystic fibrosis in the year 2020 : A disease with a new face. Acta Paediatrica 2020; 109 : 893–9. [CrossRef] [PubMed] [Google Scholar]
  62. Mok LC, Garcia-Uceda A, Cooper MN, et al. The effect of CFTR modulators on structural lung disease in cystic fibrosis. Front Pharmacol 2023; 14 : 1 147 348. [CrossRef] [Google Scholar]
  63. Drabińska N, Flynn C, Ratcliffe N, et al. A literature survey of all volatiles from healthy human breath and bodily fluids : the human volatilome. J Breath Res 2021; 15 : 034 001. [Google Scholar]
  64. Taylor-Cousar JL, Jain R. Maternal and fetal outcomes following elexacaftor-tezacaftor-ivacaftor use during pregnancy and lactation. J Cyst Fibros 2021; 20 : 402–6. [CrossRef] [PubMed] [Google Scholar]
  65. Padmakumar N, Khan HS. A foetus with cystic fibrosis - To treat or not to treat ? Respir Med Res 2023; 83 : 101 006. [Google Scholar]
  66. Sun X, Yi Y, Yan Z, et al. In utero and postnatal VX-770 administration rescues multiorgan disease in a ferret model of cystic fibrosis. Sci Transl Med 2019; 11 : eaau7531. [CrossRef] [PubMed] [Google Scholar]
  67. Qiu F, Habgood MD, Huang Y, et al. Entry of cystic fibrosis transmembrane conductance potentiator ivacaftor into the developing brain and lung. J Cyst Fibros 2021; 20 : 857–64. [CrossRef] [PubMed] [Google Scholar]
  68. Lhuillier M, Aoust L, Dreano E, et al. Elexacaftor/Tezacaftor/Ivacaftor Disrupts Respiratory Tract Development in a Murine Fetal Lung Explant Model. Am J Respir Cell Mol Biol 2022; 67 : 723–6. [CrossRef] [PubMed] [Google Scholar]
  69. Olivier M, Kavvalou A, Welsner M, et al. Real-life impact of highly effective CFTR modulator therapy in children with cystic fibrosis. Front Pharmacol 2023; 14 : 1 176 815. [CrossRef] [Google Scholar]
  70. Jain R, Kazmerski TM, Zuckerwise LC, et al. Pregnancy in cystic fibrosis : Review of the literature and expert recommendations. J Cyst Fibros 2022; 21 : 387–95. [CrossRef] [PubMed] [Google Scholar]
  71. Zhu Y, Li D, Reyes-Ortega F, et al. Ocular development after highly effective modulator treatment early in life. Front Pharmacol 2023; 14 : 1 265 138. [CrossRef] [Google Scholar]
  72. Gómez-Montes E, Salcedo Lobato E, Galindo Izquierdo A, et al. Prenatal Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapy : A Promising Way to Change the Impact of Cystic Fibrosis. Fetal Diagn Ther 2023; 50 : 136–42. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.