Open Access
Numéro
Med Sci (Paris)
Volume 40, Numéro 3, Mars 2024
Page(s) 258 - 267
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2024014
Publié en ligne 22 mars 2024
  1. Dehillotte C, Lemonnier L. Registre français de la mucoviscidose - Bilan des données 2022. 2023. [Google Scholar]
  2. Grasemann H, Ratjen F. Cystic Fibrosis. N Engl J Med 2023; 389 : 1693–707. [CrossRef] [PubMed] [Google Scholar]
  3. Varga K, Jurkuvenaite A, Wakefield J, et al. Efficient Intracellular Processing of the Endogenous Cystic Fibrosis Transmembrane Conductance Regulator in Epithelial Cell Lines. J Biol Chem 2004 ; 279(22): 578–584. [Google Scholar]
  4. Pranke IM, Sermet-Gaudelus I. Biosynthesis of cystic fibrosis transmembrane conductance regulator. Int J Biochem Cell Biol 2014 ; 52 : 26–38. [CrossRef] [PubMed] [Google Scholar]
  5. De Boeck K, Amaral MD. Progress in therapies for cystic fibrosis. Lancet Respir Med 2016 ; 4 : 662–674. [CrossRef] [PubMed] [Google Scholar]
  6. Billet A, Mornon J-P, Jollivet M, et al. CFTR : Effect of ICL2 and ICL4 amino acids in close spatial proximity on the current properties of the channel. J Cyst Fibros 2013 ; 12 : 737–745. [CrossRef] [PubMed] [Google Scholar]
  7. Simonin J, Bille E, Crambert G, et al. Author Correction : Airway surface liquid acidification initiates host defense abnormalities in Cystic Fibrosis. Sci Rep 2019 ; 9(17): 535. [CrossRef] [PubMed] [Google Scholar]
  8. Cantin AM, Hartl D, Konstan MW, et al. Inflammation in cystic fibrosis lung disease : Pathogenesis and therapy. J Cyst Fibros 2015 ; 14 : 419–430. [CrossRef] [PubMed] [Google Scholar]
  9. Lemke A.. Reproductive issues in adults with cystic fibrosis : Implications for genetic counseling. J Genet Couns 1992 ; 1 : 211–218. [CrossRef] [PubMed] [Google Scholar]
  10. Hodges CA, Palmert MR, Drumm ML. Infertility in Females with Cystic Fibrosis Is Multifactorial : Evidence from Mouse Models. Endocrinology 2008 ; 149(2): 790–797. [Google Scholar]
  11. Soya N, Xu H, Roldan A, et al. Folding correctors can restore CFTR posttranslational folding landscape by allosteric domain-domain coupling. bioRxiv 2023; 2023.10.19.563 107. [PubMed] [Google Scholar]
  12. Van Goor F, Hadida S, Grootenhuis PDJ, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA 2009 ; 106(18): 825–830. [Google Scholar]
  13. Eckford PDW, Li C, Ramjeesingh M, et al. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Potentiator VX-770 (Ivacaftor) Opens the Defective Channel Gate of Mutant CFTR in a Phosphorylation-dependent but ATP-independent Manner. J Biol Chem 2012 ; 287(36): 639–649. [Google Scholar]
  14. Ramsey BW, Bell SC, Wainwright CE, et al. A CFTR Potentiator in Patients with Cystic Fibrosis and the G551D Mutation. N Engl J Med 2011 ; 10 : [Google Scholar]
  15. Laselva O, Molinski S, Casavola V, et al. Correctors of the Major Cystic Fibrosis Mutant Interact through Membrane-Spanning Domains. Mol Pharmacol 2018 ; 93 : 612–618. [CrossRef] [PubMed] [Google Scholar]
  16. Boyle MP, Bell SC, Konstan MW, et al. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation : a phase 2 randomised controlled trial. Lancet Respir Med 2014 ; 2 : 527–538. [CrossRef] [PubMed] [Google Scholar]
  17. Walker S, Flume P, McNamara J, et al. A phase 3 study of tezacaftor in combination with ivacaftor in children aged 6 through 11 years with cystic fibrosis. J Cyst Fibros 2019 ; 18 : 708–713. [CrossRef] [PubMed] [Google Scholar]
  18. Veit G, Xu H, Dreano E, et al. Structure-guided combination therapy to potently improve the function of mutant CFTRs. Nat Med 2018 ; 24 : 1732–1742. [CrossRef] [PubMed] [Google Scholar]
  19. Heijerman HGM, McKone EF, Downey DG, et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation : a double-blind, randomised, phase 3 trial. Lancet 2019 ; 394 : 1940–1948. [CrossRef] [PubMed] [Google Scholar]
  20. Middleton PG, Mall MA, Dřevínek P, et al. Elexacaftor–Tezacaftor–Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N Engl J Med 2019 ; 381 : 1809–1819. [CrossRef] [PubMed] [Google Scholar]
  21. Mall MA, Brugha R, Gartner S, et al. Efficacy and Safety of Elexacaftor/Tezacaftor/Ivacaftor in Children 6 Through 11 Years of Age with Cystic Fibrosis Heterozygous for F508del and a Minimal Function Mutation : A Phase 3b, Randomized, Placebo-controlled Study. Am J Respir Crit Care Med 2022; 206 : 1361–9. [CrossRef] [PubMed] [Google Scholar]
  22. Goralski JL, Hoppe JE, Mall MA, et al. Phase 3 Open-Label Clinical Trial of Elexacaftor/Tezacaftor/Ivacaftor in Children Aged 2 Through 5 Years with Cystic Fibrosis and at Least One F508del Allele. Am J Respir Crit Care Med 2023; 208 : 59–67. [CrossRef] [PubMed] [Google Scholar]
  23. Uluer AZ, MacGregor G, Azevedo P, et al. Safety and efficacy of vanzacaftor-tezacaftor-deutivacaftor in adults with cystic fibrosis : randomised, double-blind, controlled, phase 2 trials. Lancet Respir Med 2023; 11 : 550–62. [CrossRef] [PubMed] [Google Scholar]
  24. Dougherty PG, Wellmerling JH, Koley A, et al. Cyclic Peptidyl Inhibitors against CAL/CFTR Interaction for Treatment of Cystic Fibrosis. J Med Chem 2020; 63 : 15773–84. [CrossRef] [PubMed] [Google Scholar]
  25. Fajac I, Sermet I. Therapeutic Approaches for Patients with Cystic Fibrosis Not Eligible for Current CFTR Modulators. Cells 2021; 10 : 2793. [CrossRef] [PubMed] [Google Scholar]
  26. Fajac I, Sermet-Gaudelus I. Emerging medicines to improve the basic defect in cystic fibrosis. Expert Opin Emerg Drugs 2022; 27 : 229–39. [CrossRef] [PubMed] [Google Scholar]
  27. Allan KM, Farrow N, Donnelley M, et al. Treatment of Cystic Fibrosis : From Gene- to Cell-Based Therapies. Front Pharmacol 2021; 12 : 639 475. [CrossRef] [Google Scholar]
  28. Cooney AL, McCray PB, Sinn PL. Cystic Fibrosis Gene Therapy : Looking Back. Looking Forward. Genes (Basel) 2018 ; 9 : 538. [CrossRef] [Google Scholar]
  29. Taylor-Cousar JL, Boyd AC, Alton EWFW, et al. Genetic therapies in cystic fibrosis. Curr Opin Pulm Med 2023; 29 : 615–20. [CrossRef] [PubMed] [Google Scholar]
  30. Griesenbach U, McLachlan G, Owaki T, et al. Validation of recombinant Sendai virus in a non-natural host model. Gene Ther 2011 ; 18 : 182–188. [CrossRef] [PubMed] [Google Scholar]
  31. Hodges CA, Conlon RA. Delivering on the promise of gene editing for cystic fibrosis. Genes Dis 2019 ; 6 : 97–108. [CrossRef] [PubMed] [Google Scholar]
  32. Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017 ; 551 : 464–471. [CrossRef] [PubMed] [Google Scholar]
  33. Berical A, Lee RE, Randell SH, et al. Challenges Facing Airway Epithelial Cell-Based Therapy for Cystic Fibrosis. Front Pharmacol 2019 ; 10 : 74. [CrossRef] [PubMed] [Google Scholar]
  34. Hayes D, Kopp BT, Hill CL, et al. Cell Therapy for Cystic Fibrosis Lung Disease : Regenerative Basal Cell Amplification. Stem Cells Transl Med 2019 ; 8 : 225–235. [CrossRef] [PubMed] [Google Scholar]
  35. Robinson E, MacDonald KD, Slaughter K, et al. Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis. Mol Ther 2018 ; 26(2): 034–046. [Google Scholar]
  36. Haque AKMA, Dewerth A, Antony JS, et al. Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis. Sci Rep 2018 ; 8(167): 76. [CrossRef] [PubMed] [Google Scholar]
  37. Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-Cas13. Science 2017 ; 358(1): 019–027. [CrossRef] [PubMed] [Google Scholar]
  38. Rowe SM, Zuckerman JB, Dorgan D, et al. Inhaled mRNA therapy for treatment of cystic fibrosis : Interim results of a randomized, double-blind, placebo-controlled phase 1/2 clinical study. J Cyst Fibros 2023; 22 : 656–64. [CrossRef] [PubMed] [Google Scholar]
  39. Wei T, Sun Y, Cheng Q, et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat Commun 2023; 14 : 7322. [CrossRef] [PubMed] [Google Scholar]
  40. Mort M, Ivanov D, Cooper DN, et al. A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 2008 ; 29(1): 037–047. [Google Scholar]
  41. Orenti A, Pranke I, Faucon C, et al. Nonsense mutations accelerate lung disease and decrease survival of cystic fibrosis children. J Cyst Fibros 2023; S1569–1993 (23) 00819–6. [PubMed] [Google Scholar]
  42. Sermet-Gaudelus I, Renouil M, Fajac A, et al. In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis : a pilot study. BMC Med 2007 ; 5 : 5. [CrossRef] [PubMed] [Google Scholar]
  43. Djumagulov M, Demeshkina N, Jenner L, et al. Accuracy mechanism of eukaryotic ribosome translocation. Nature 2021; 600 : 543–6. [CrossRef] [PubMed] [Google Scholar]
  44. Roy B, Leszyk JD, Mangus DA, et al. Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc Natl Acad Sci USA 2015 ; 112(3): 038–043. [Google Scholar]
  45. Pranke IM, Varilh J, Hatton A, et al. The U UGA C sequence provides a favorable context to ELX-02 induced CFTR readthrough. J Cyst Fibros 2023; 22 : 560–3. [CrossRef] [PubMed] [Google Scholar]
  46. Konstan MW, VanDevanter DR, Rowe SM, et al. Efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis not receiving chronic inhaled aminoglycosides : The international, randomized, double-blind, placebo-controlled Ataluren Confirmatory Trial in Cystic Fibrosis (ACT CF). J Cyst Fibros 2020; 19 : 595–601. [CrossRef] [PubMed] [Google Scholar]
  47. Albers S, Allen EC, Bharti N, et al. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 2023; 618 : 842–8. [CrossRef] [PubMed] [Google Scholar]
  48. Levin AA. Treating Disease at the RNA Level with Oligonucleotides. N Engl J Med 2019 ; 380 : 57–70. [CrossRef] [PubMed] [Google Scholar]
  49. Nissim-Rafinia M, Aviram M, Randell SH, et al. Restoration of the cystic fibrosis transmembrane conductance regulator function by splicing modulation. EMBO Rep 2004 ; 5(1): 071–077. [Google Scholar]
  50. Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med 2017 ; 377(1): 723–732. [Google Scholar]
  51. Michaels WE, Bridges RJ, Hastings ML. Antisense oligonucleotide-mediated correction of CFTR splicing improves chloride secretion in cystic fibrosis patient-derived bronchial epithelial cells. Nucleic Acids Res 2020; 48 : 7454–67. [PubMed] [Google Scholar]
  52. Oren YS, Irony-Tur Sinai M, Golec A, et al. Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3 849 + 10 kb C-to-T splicing mutation. J Cyst Fibros 2021; 20 : 865–75. [CrossRef] [PubMed] [Google Scholar]
  53. Igreja S, Clarke LA, Botelho HM, et al. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides. Hum Mutat 2016 ; 37 : 209–215. [CrossRef] [PubMed] [Google Scholar]
  54. Lopez A, Daly C, Vega-Hernandez G, et al. Elexacaftor/tezacaftor/ivacaftor projected survival and long-term health outcomes in people with cystic fibrosis homozygous for F508del. J Cyst Fibros 2023; 22 : 607–14. [CrossRef] [PubMed] [Google Scholar]
  55. Zampoli M, Morrow BM, Paul G. Real-world disparities and ethical considerations with access to CFTR modulator drugs : Mind the gap ! Front Pharmacol 2023; 14 : 1163 391. [CrossRef] [Google Scholar]
  56. Costa E, Girotti S, Pauro F, et al. The impact of FDA and EMA regulatory decision-making process on the access to CFTR modulators for the treatment of cystic fibrosis. Orphanet J Rare Dis 2022; 17 : 188. [CrossRef] [PubMed] [Google Scholar]
  57. Kerem E, Cohen-Cymberknoh M, Tsabari R, et al. Ivacaftor in People With Cystic Fibrosis and a 3 849+10kb C →T or D1152H Residual Function Mutation. Ann Am Thorac Soc 2021; 18 : 433–41. [CrossRef] [PubMed] [Google Scholar]
  58. Dreano E, Burgel PR, Hatton A, et al. Theratyping Cystic Fibrosis patients to guide Elexacaftor-Tezacaftor-Ivacaftor out of label prescription. Eur Respir J 2023; 62 : 2300 110. [Google Scholar]
  59. Dagenais R, Su V, Quon B. Real-World Safety of CFTR Modulators in the Treatment of Cystic Fibrosis : A Systematic Review. JCM 2020; 10 : 23. [CrossRef] [Google Scholar]
  60. Tewkesbury DH, Athwal V, Bright-Thomas RJ, et al. Longitudinal effects of elexacaftor/tezacaftor/ivacaftor on liver tests at a large single adult cystic fibrosis centre. J Cyst Fibros 2023; 22 : 256–62. [CrossRef] [PubMed] [Google Scholar]
  61. De Boeck K. Cystic fibrosis in the year 2020 : A disease with a new face. Acta Paediatrica 2020; 109 : 893–9. [CrossRef] [PubMed] [Google Scholar]
  62. Mok LC, Garcia-Uceda A, Cooper MN, et al. The effect of CFTR modulators on structural lung disease in cystic fibrosis. Front Pharmacol 2023; 14 : 1 147 348. [CrossRef] [Google Scholar]
  63. Drabińska N, Flynn C, Ratcliffe N, et al. A literature survey of all volatiles from healthy human breath and bodily fluids : the human volatilome. J Breath Res 2021; 15 : 034 001. [Google Scholar]
  64. Taylor-Cousar JL, Jain R. Maternal and fetal outcomes following elexacaftor-tezacaftor-ivacaftor use during pregnancy and lactation. J Cyst Fibros 2021; 20 : 402–6. [CrossRef] [PubMed] [Google Scholar]
  65. Padmakumar N, Khan HS. A foetus with cystic fibrosis - To treat or not to treat ? Respir Med Res 2023; 83 : 101 006. [Google Scholar]
  66. Sun X, Yi Y, Yan Z, et al. In utero and postnatal VX-770 administration rescues multiorgan disease in a ferret model of cystic fibrosis. Sci Transl Med 2019; 11 : eaau7531. [CrossRef] [PubMed] [Google Scholar]
  67. Qiu F, Habgood MD, Huang Y, et al. Entry of cystic fibrosis transmembrane conductance potentiator ivacaftor into the developing brain and lung. J Cyst Fibros 2021; 20 : 857–64. [CrossRef] [PubMed] [Google Scholar]
  68. Lhuillier M, Aoust L, Dreano E, et al. Elexacaftor/Tezacaftor/Ivacaftor Disrupts Respiratory Tract Development in a Murine Fetal Lung Explant Model. Am J Respir Cell Mol Biol 2022; 67 : 723–6. [CrossRef] [PubMed] [Google Scholar]
  69. Olivier M, Kavvalou A, Welsner M, et al. Real-life impact of highly effective CFTR modulator therapy in children with cystic fibrosis. Front Pharmacol 2023; 14 : 1 176 815. [CrossRef] [Google Scholar]
  70. Jain R, Kazmerski TM, Zuckerwise LC, et al. Pregnancy in cystic fibrosis : Review of the literature and expert recommendations. J Cyst Fibros 2022; 21 : 387–95. [CrossRef] [PubMed] [Google Scholar]
  71. Zhu Y, Li D, Reyes-Ortega F, et al. Ocular development after highly effective modulator treatment early in life. Front Pharmacol 2023; 14 : 1 265 138. [CrossRef] [Google Scholar]
  72. Gómez-Montes E, Salcedo Lobato E, Galindo Izquierdo A, et al. Prenatal Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapy : A Promising Way to Change the Impact of Cystic Fibrosis. Fetal Diagn Ther 2023; 50 : 136–42. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.