Open Access
Issue
Med Sci (Paris)
Volume 40, Number 1, Janvier 2024
La cavité orale et les dents au cœur de la santé
Page(s) 79 - 84
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023199
Published online 01 February 2024
  1. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015 ; 521 : 436–444. [Google Scholar]
  2. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019 ; 25 : 44–56. [CrossRef] [PubMed] [Google Scholar]
  3. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017 ; 542 : 115–118. [Google Scholar]
  4. Keski-Filppula T, Nikki M, Haapea M, et al. Using artificial intelligence to detect chest X-rays with no significant findings in a primary health care setting in Oulu, Finland. 2022; https://doi.org/10.48550/arXiv.2205.08123. [Google Scholar]
  5. Schwendicke F, Krois J. Data Dentistry: How Data Are Changing Clinical Care and Research. J Dent Res 2022; 101 : 21–9. [CrossRef] [PubMed] [Google Scholar]
  6. Mörch CM, Atsu S, Cai W, et al. Artificial Intelligence and Ethics in Dentistry: A Scoping Review. J Dent Res 2021; 100 : 1452–60. [CrossRef] [PubMed] [Google Scholar]
  7. Schwendicke F, Chaurasia A, Arsiwala L, et al. Deep learning for cephalometric landmark detection: systematic review and meta-analysis. Clin Oral Invest 2021; 25 : 4299–309. [CrossRef] [PubMed] [Google Scholar]
  8. Dot G, Schouman T, Dubois G, et al. Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework. Eur Radiol 2022; 32 : 3639–48. [CrossRef] [PubMed] [Google Scholar]
  9. Dot G, Schouman T, Chang S, et al. Automatic 3-Dimensional Cephalometric Landmarking via Deep Learning. J Dent Res 2022; 101 : 1380–7. [CrossRef] [PubMed] [Google Scholar]
  10. Hao J, Liao W, Zhang YL, et al. Toward Clinically Applicable 3-Dimensional Tooth Segmentation via Deep Learning. J Dent Res 2022; 101 : 304–11. [CrossRef] [PubMed] [Google Scholar]
  11. Kühnisch J, Meyer O, Hesenius M, et al. Caries Detection on Intraoral Images Using Artificial Intelligence. J Dent Res 2022; 101 : 158–65. [CrossRef] [PubMed] [Google Scholar]
  12. Schwendicke F, Golla T, Dreher M, et al. Convolutional neural networks for dental image diagnostics: A scoping review. J Dent 2019 ; 91 : 103226. [CrossRef] [PubMed] [Google Scholar]
  13. Chen Q, Zhou X, Wu J, et al. Structuring electronic dental records through deep learning for a clinical decision support system. Health Informatics J 2021; 27 : 1460458220980036. [CrossRef] [Google Scholar]
  14. Rischke R, Schneider L, Müller K, et al. Federated Learning in Dentistry: Chances and Challenges. J Dent Res 2022; 101 : 1269–73. [CrossRef] [PubMed] [Google Scholar]
  15. Schwendicke F, Cejudo Grano de Oro J, Garcia Cantu A, et al. Artificial Intelligence for Caries Detection: Value of Data and Information. J Dent Res 2022; 101 : 1350–1356. [CrossRef] [PubMed] [Google Scholar]
  16. Schwendicke F, Singh T, Lee J-H, et al. Artificial intelligence in dental research: Checklist for authors, reviewers, readers. J Dent 2021; 107 : 103610. [CrossRef] [PubMed] [Google Scholar]
  17. Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res 2020; 99 : 769–74. [CrossRef] [PubMed] [Google Scholar]
  18. Muehlematter UJ, Daniore P, Vokinger KN. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): a comparative analysis. Lancet Digital Health 2021; 3 : e195–e203. [CrossRef] [Google Scholar]
  19. Ma J, Schneider L, Lapuschkin S, et al. Towards Trustworthy AI in Dentistry. J Dent Res 2022; 101 : 1263–8. [CrossRef] [PubMed] [Google Scholar]
  20. Gaube S, Suresh H, Raue M, et al. Do as AI say: susceptibility in deployment of clinical decision-aids. npj Digit Med 2021; 4 : 31. [CrossRef] [PubMed] [Google Scholar]
  21. Ducret M, Mörch C, Richert R, et al. Intelligence artificielle en médecine orale : comprendre les enjeux éthiques et juridiques pour mieux s’y préparer. L’ Information dentaire 2022; 48–53. [Google Scholar]
  22. Maddahi Y, Kalvandi M, Langman S, et al. RoboEthics in COVID-19: A Case Study in Dentistry. Front Robot AI 2021; 8 : 612740. [CrossRef] [PubMed] [Google Scholar]
  23. Mulligan S, Smith L, Martin N. Sustainable oral healthcare and the environment: challenges. Dent Update 2021; 48 : 493–501. [CrossRef] [Google Scholar]
  24. Martin N, Smith L, Mulligan S. Sustainable oral healthcare and the environment: mitigation strategies. Dent Update 2021; 48 : 524–31. [CrossRef] [Google Scholar]
  25. Hsu L-P, Huang Y-K, Chang Y-C. The implementation of artificial intelligence in dentistry could enhance environmental sustainability. J Dent Sci 2022; 17 : 1081–2. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.