Free Access
Issue
Med Sci (Paris)
Volume 40, Number 1, Janvier 2024
La cavité orale et les dents au cœur de la santé
Page(s) 16 - 23
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023190
Published online 01 February 2024
  1. Yuan Y, Chai Y. Regulatory mechanisms of jaw bone and tooth development. Curr Top Dev Biol 2019; 133 : 91–118. [CrossRef] [PubMed] [Google Scholar]
  2. Babajko S, Gayrard V, Houari S, et al. La sphère orale, cible et marqueur de l’exposition environnementale. I. Défauts du développement dentaire. Med Sci (Paris) 2020; 36 : 225–30. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Collignon A-M, Vergnes J-N, Germa A, et al. Factors and Mechanisms Involved in Acquired Developmental Defects of Enamel : A Scoping Review. Front Pediatr 2022; 10 : 836708. [CrossRef] [PubMed] [Google Scholar]
  4. de La Dure-Molla M, Fournier BP, Manzanares MC, et al. Elements of morphology : Standard terminology for the teeth and classifying genetic dental disorders. Am J Med Genet A 2019; 179 : 1913–81. [CrossRef] [PubMed] [Google Scholar]
  5. de la Dure-Molla M, Quentric M, Yamaguti PM, et al. Pathognomonic oral profile of Enamel Renal Syndrome (ERS) caused by recessive FAM20A mutations. Orphanet J Rare Dis 2014; 9 : 84. [CrossRef] [PubMed] [Google Scholar]
  6. Linglart A, Biosse-Duplan M. Hypophosphatasia. Curr Osteoporos Rep 2016; 14 : 95–105. [CrossRef] [PubMed] [Google Scholar]
  7. Bloch-Zupan A, Vaysse F. Hypophosphatasia : oral cavity and dental disorders. Arch Pediatr 2017; 24 : 5S80–85S84. [CrossRef] [PubMed] [Google Scholar]
  8. Yu T, Klein OD. Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development 2020; 147 : dev184754. [CrossRef] [PubMed] [Google Scholar]
  9. Balic A. Concise Review : Cellular and Molecular Mechanisms Regulation of Tooth Initiation. Stem Cells 2019; 37 : 26–32. [CrossRef] [PubMed] [Google Scholar]
  10. Bloch-Zupan A, Jamet X, Etard C, et al. Homozygosity mapping and candidate prioritization identify mutations, missed by whole-exome sequencing, in SMOC2, causing major dental developmental defects. Am J Hum Genet 2011; 89 : 773–81. [CrossRef] [PubMed] [Google Scholar]
  11. Nassif A, Lignon G, Asselin A, et al. Transcriptional Regulation of Jaw Osteoblasts : Development to Pathology. J Dent Res 2022; 101 : 859–69. [CrossRef] [PubMed] [Google Scholar]
  12. Zhang H, Gong X, Xu X, et al. Tooth number abnormality : from bench to bedside. Int J Oral Sci 2023; 15 : 5. [CrossRef] [PubMed] [Google Scholar]
  13. Wright JT, Abbott BM, Salois MN, et al. Rare diseases of ectoderm : Translating discovery to therapy. Am J Med Genet A 2023; 191 : 902–9. [CrossRef] [PubMed] [Google Scholar]
  14. Smith CEL, Poulter JA, Antanaviciute A, et al. Amelogenesis Imperfecta; Genes, Proteins, and Pathways. Front Physiol 2017; 8 : 435. [CrossRef] [PubMed] [Google Scholar]
  15. Talaat DM, Hachim IY, Afifi MM, et al. Assessment of risk factors and molecular biomarkers in children with supernumerary teeth : a single-center study. BMC Oral Health 2022; 22 : 117. [CrossRef] [PubMed] [Google Scholar]
  16. Arte S, Parmanen S, Pirinen S, et al. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations. PLoS One 2013; 8 : e73705. [Google Scholar]
  17. Chu K-Y, Wang Y-L, Chou Y-R, et al. Synergistic Mutations of LRP6 and WNT10A in Familial Tooth Agenesis. J Pers Med 2021; 11 : 1217. [CrossRef] [PubMed] [Google Scholar]
  18. Yu M, Wong S-W, Han D, et al. Genetic analysis : Wnt and other pathways in nonsyndromic tooth agenesis. Oral Dis 2019; 25 : 646–51. [CrossRef] [PubMed] [Google Scholar]
  19. Fournier BP, Bruneau MH, Toupenay S, et al. Patterns of Dental Agenesis Highlight the Nature of the Causative Mutated Genes. J Dent Res 2018; 97 : 1306–16. [CrossRef] [PubMed] [Google Scholar]
  20. Bowles B, Ferrer A, Nishimura CJ, et al. TSPEAR variants are primarily associated with ectodermal dysplasia and tooth agenesis but not hearing loss : A novel cohort study. Am J Med Genet A 2021; 185 : 2417–33. [CrossRef] [PubMed] [Google Scholar]
  21. Kunz F, Kayserili H, Midro A, et al. Characteristic dental pattern with hypodontia and short roots in Fraser syndrome. Am J Med Genet A 2020; 182 : 1681–9. [CrossRef] [PubMed] [Google Scholar]
  22. Prasad MK, Geoffroy V, Vicaire S, et al. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement. J Med Genet 2016; 53 : 98–110. [CrossRef] [PubMed] [Google Scholar]
  23. Tardieu C, Jung S, Niederreither K, et al. Dental and extra-oral clinical features in 41 patients with WNT10A gene mutations : A multicentric genotype-phenotype study. Clin Genet 2017; 92 : 477–86. [CrossRef] [PubMed] [Google Scholar]
  24. Lignon G, de la Dure-Molla M, Dessombz A, et al. L’émail - Un autoassemblage unique dans le monde du minéral. Med Sci (Paris) 2015; 31 : 515–521. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  25. Bloch-Zupan A, Rey T, Jimenez-Armijo A, et al. Amelogenesis imperfecta : Next-generation sequencing sheds light on Witkop’s classification. Front Physiol 2023; 14 : 1130175. [CrossRef] [PubMed] [Google Scholar]
  26. Lacruz RS, Habelitz S, Wright JT, et al. Dental enamel formation and implications for oral health and disease. Physiol Rev 2017; 97 : 939–93. [CrossRef] [Google Scholar]
  27. Bardet C, Courson F, Wu Y, et al. Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation. J Bone Miner Res 2016; 31 : 498–513. [CrossRef] [PubMed] [Google Scholar]
  28. Yamaguti PM, Neves F de AR, Hotton D, et al. Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by CLDN19 gene mutations. J Med Genet 2017; 54 : 26–37. [CrossRef] [PubMed] [Google Scholar]
  29. Simancas Escorcia V, Diarra A, Naveau A, et al. Lack of FAM20A, Ectopic Gingival Mineralization and Chondro/Osteogenic Modifications in Enamel Renal Syndrome. Front Cell Dev Biol 2020; 8 : 605084. [CrossRef] [PubMed] [Google Scholar]
  30. Dubail J, Huber C, Chantepie S, et al. SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects. Nat Commun 2018; 9 : 3087. [CrossRef] [PubMed] [Google Scholar]
  31. Simmer JP, Richardson AS, Wang S-K, et al. Ameloblast transcriptome changes from secretory to maturation stages. Connect Tissue Res 2014; 55 : 29–32. [CrossRef] [PubMed] [Google Scholar]
  32. Sharir A, Marangoni P, Zilionis R, et al. A large pool of actively cycling progenitors orchestrates self-renewal and injury repair of an ectodermal appendage. Nat Cell Biol 2019; 21 : 1102–12. [CrossRef] [PubMed] [Google Scholar]
  33. Krivanek J, Soldatov RA, Kastriti ME, et al. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat Commun 2020; 11 : 4816. [CrossRef] [PubMed] [Google Scholar]
  34. Fresia R, Marangoni P, Burstyn-Cohen T, et al. From Bite to Byte : Dental Structures Resolved at a Single-Cell Resolution. J Dent Res 2021; 100 : 897–905. [CrossRef] [PubMed] [Google Scholar]
  35. Opsahl Vital S, Gaucher C, Bardet C, et al. Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone 2012; 50 : 989–97. [CrossRef] [PubMed] [Google Scholar]
  36. Kovacs CS, Chaussain C, Osdoby P, et al. The role of biomineralization in disorders of skeletal development and tooth formation. Nat Rev Endocrinol 2021; 17 : 336–49. [CrossRef] [PubMed] [Google Scholar]
  37. Mortier GR, Cohn DH, Cormier-Daire V, et al. Nosology and classification of genetic skeletal disorders : 2019 revision. Am J Med Genet A 2019; 179 : 2393–419. [CrossRef] [PubMed] [Google Scholar]
  38. de La Dure-Molla M, Philippe Fournier B, Berdal A. Isolated dentinogenesis imperfecta and dentin dysplasia : revision of the classification. Eur J Hum Genet 2015; 23 : 445–51. [CrossRef] [PubMed] [Google Scholar]
  39. Yamaguti PM, de La Dure-Molla M, Monnot S, et al. Unequal Impact of COL1A1 and COL1A2 Variants on Dentinogenesis Imperfecta. J Dent Res 2023; 102 : 616–25. [CrossRef] [PubMed] [Google Scholar]
  40. Thumbigere-Math V, Alqadi A, Chalmers NI, et al. Hypercementosis Associated with ENPP1 Mutations and GACI. J Dent Res 2018; 97 : 432–41. [CrossRef] [PubMed] [Google Scholar]
  41. Beck-Nielsen SS, Mughal Z, Haffner D, et al. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 2019; 14 : 58. [CrossRef] [PubMed] [Google Scholar]
  42. Bacchetta J, Bardet C, Prié D. Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting. Metabolism 2020; 103S : 153865. [CrossRef] [Google Scholar]
  43. McKee MD, Hoac B, Addison WN, et al. Extracellular matrix mineralization in periodontal tissues : Noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and X-linked hypophosphatemia. Periodontol 2000 2013; 63 : 102–22. [CrossRef] [PubMed] [Google Scholar]
  44. Chaussain-Miller C, Sinding C, Wolikow M, et al. Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets : prevention by early treatment with 1-hydroxyvitamin D. J Pediatr 2003; 142 : 324–31. [CrossRef] [PubMed] [Google Scholar]
  45. Biosse Duplan M, Coyac BR, Bardet C, et al. Phosphate and Vitamin D Prevent Periodontitis in X-Linked Hypophosphatemia. J Dent Res 2017; 96 : 388–95. [CrossRef] [PubMed] [Google Scholar]
  46. Boukpessi T, Hoac B, Coyac BR, et al. Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia. Bone 2017; 95 : 151–61. [CrossRef] [PubMed] [Google Scholar]
  47. Ward LM, Glorieux FH, Whyte MP, et al. Effect of Burosumab Compared With Conventional Therapy on Younger vs Older Children With X-linked Hypophosphatemia. J Clin Endocrinol Metab 2022; 107 : e3241–53. [CrossRef] [PubMed] [Google Scholar]
  48. Gadion M, Hervé A, Herrou J, et al. Burosumab and Dental Abscesses in Children With X-Linked Hypophosphatemia. JBMR Plus 2022; 6 : e10672. [CrossRef] [PubMed] [Google Scholar]
  49. Le Norcy E, Reggio-Paquet C, de Kerdanet M, et al. Dental and craniofacial features associated with GNAS loss of function mutations. Eur J Orthod 2020; 42 : 525–33. [CrossRef] [PubMed] [Google Scholar]
  50. Whyte JL, Smith AA, Helms JA. Wnt Signaling and Injury Repair. Cold Spring Harbor Perspectives in Biology 2012; 4 : a008078–a008078. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.