Open Access
Issue |
Med Sci (Paris)
Volume 39, Number 12, Décembre 2023
|
|
---|---|---|
Page(s) | 967 - 974 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2023181 | |
Published online | 18 December 2023 |
- Buckingham M.. Skeletal muscle formation in vertebrates. Curr Opin Genet Dev 2001 ; 11 : 440–448. [CrossRef] [PubMed] [Google Scholar]
- Comai G, Tajbakhsh S. Molecular and cellular regulation of skeletal myogenesis. Curr Top Dev Biol 2014 ; 110 : 1–73. [CrossRef] [PubMed] [Google Scholar]
- Keenan SR, Currie PD. The Developmental Phases of Zebrafish Myogenesis. J Dev Biol 2019 ; 7 : 12. [CrossRef] [PubMed] [Google Scholar]
- Della Gaspera B, Armand A-S, Lecolle S, et al. Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis. PLoS One 2012; 7 : e52359. [CrossRef] [PubMed] [Google Scholar]
- Mansfield JH, Haller E, Holland ND, et al. Development of somites and their derivatives in amphioxus, and implications for the evolution of vertebrate somites. Evodevo 2015 ; 6 : 21. [CrossRef] [PubMed] [Google Scholar]
- Scaal M, Wiegreffe C. Somite compartments in anamniotes. Anat Embryol (Berl) 2006 ; 211(Suppl 1): 9–19. [CrossRef] [PubMed] [Google Scholar]
- Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2021; 9 : 790847. [Google Scholar]
- Shearman RM, Burke AC. The lateral somitic frontier in ontogeny and phylogeny. J Exp Zool B Mol Dev Evol 2009 ; 312 : 603–612. [CrossRef] [Google Scholar]
- Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987 ; 51 : 987–1000. [CrossRef] [PubMed] [Google Scholar]
- Della Gaspera B, Armand A-S, Sequeira I, et al. Myogenic waves and myogenic programs during Xenopus embryonic myogenesis. Dev Dyn 2012; 241 : 995–1007. [CrossRef] [PubMed] [Google Scholar]
- Hopwood ND, Pluck A, Gurdon JB, et al. Expression of XMyoD protein in early Xenopus laevis embryos. Development 1992 ; 114 : 31–38. [CrossRef] [PubMed] [Google Scholar]
- Lagha M, Rocancourt D, Relaix F. Origine du muscle squelettique: roles de Pax3/Pax7. Med Sci (Paris) 2005 ; 21 : 801–803. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Devoto SH, Stoiber W, Hammond CL, et al. Generality of vertebrate developmental patterns: evidence for a dermomyotome in fish. Evol Dev 2006 ; 8 : 101–110. [CrossRef] [PubMed] [Google Scholar]
- Rescan PY. Un dermomyotome chez les poissons ?. Med Sci (Paris) 2010 ; 26 : 504–508. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Grimaldi A, Tettamanti G, Martin BL, et al. Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis. Development 2004 ; 131 : 3249–3262. [CrossRef] [PubMed] [Google Scholar]
- Kusakabe R, Kuratani S. Evolution and developmental patterning of the vertebrate skeletal muscles: perspectives from the lamprey. Dev Dyn 2005 ; 234 : 824–834. [CrossRef] [PubMed] [Google Scholar]
- Hamilton L.. The formation of somites in Xenopus. J Embryol Exp Morphol 1969 ; 22 : 253–264. [PubMed] [Google Scholar]
- Martin BL, Harland RM. Hypaxial muscle migration during primary myogenesis in Xenopus laevis. Dev Biol 2001 ; 239 : 270–280. [CrossRef] [PubMed] [Google Scholar]
- Holland LZ. Muscle Development in Amphioxus: Morphology, Biochemistry, and Molecular Biology. Israel Journal of Zoology 1996 ; 42 : S235–S246. [Google Scholar]
- Yong LW, Lu T-M, Tung C-H, et al. Somite Compartments in Amphioxus and Its Implications on the Evolution of the Vertebrate Skeletal Tissues. Front Cell Dev Biol 2021; 9 : 607057. [CrossRef] [PubMed] [Google Scholar]
- Scaal M.. Early development of the vertebral column. Semin Cell Dev Biol 2016 ; 49 : 83–91. [CrossRef] [PubMed] [Google Scholar]
- Ryke P a. J. The Ontogenetic Development of the Somatic Musculature of the Trunk of the Aglossal Anuran Xenopus Laevis (daudin). Acta Zoologica 1953; 34 : 1–70. [CrossRef] [Google Scholar]
- Sánchez RS, Sánchez SS. Characterization of pax1, pax9, and uncx sclerotomal genes during Xenopus laevis embryogenesis. Dev Dyn 2013 ; 242 : 572–579. [CrossRef] [PubMed] [Google Scholar]
- Della Gaspera B, Mateus A, Andéol Y, et al. Lineage tracing of sclerotome cells in amphibian reveals that multipotent somitic cells originate from lateral somitic frontier. Dev Biol 2019; 453 : 11–8. [CrossRef] [PubMed] [Google Scholar]
- Hatschek B. Die Metamerie des Amphioxus und des Ammocoetes. Anat Anz, Ergänz.-H, Verh Anat Ges, Jena 1892; 7 :136–62. [Google Scholar]
- Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors. Cell 2003 ; 113 : 235–248. [CrossRef] [PubMed] [Google Scholar]
- Schweitzer R, Chyung JH, Murtaugh LC, et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 2001 ; 128 : 3855–3866. [CrossRef] [PubMed] [Google Scholar]
- Della Gaspera B, Armand A-S, Sequeira I, et al. The Xenopus MEF2 gene family: evidence of a role for XMEF2C in larval tendon development. Dev Biol 2009; 328 : 392–402. [CrossRef] [PubMed] [Google Scholar]
- Bricard Y, Rallière C, Lebret V, et al. Early fish myoseptal cells: insights from the trout and relationships with amniote axial tenocytes. PLoS One 2014 ; 9 : e91876. [CrossRef] [PubMed] [Google Scholar]
- Ma RC, Jacobs CT, Sharma P, et al. Stereotypic generation of axial tenocytes from bipartite sclerotome domains in zebrafish. PLoS Genet 2018 ; 14 : e1007775. [CrossRef] [PubMed] [Google Scholar]
- Charvet B, Malbouyres M, Pagnon-Minot A, et al. Development of the zebrafish myoseptum with emphasis on the myotendinous junction. Cell Tissue Res 2011 ; 346 : 439–449. [CrossRef] [PubMed] [Google Scholar]
- Banfi S, Monti L, Acquati F, et al. Muscle development and differentiation in the urodele Ambystoma mexicanum. Dev Growth Differ 2012 ; 54 : 489–502. [CrossRef] [PubMed] [Google Scholar]
- Thor S, Thomas JB. Motor neuron specification in worms, flies and mice: conserved and “lost” mechanisms. Curr Opin Genet Dev 2002 ; 12 : 558–564. [CrossRef] [PubMed] [Google Scholar]
- Brunet T, Fischer AH, Steinmetz PR, et al. The evolutionary origin of bilaterian smooth and striated myocytes. Elife 2016 ; 5 : e19607. [CrossRef] [PubMed] [Google Scholar]
- Chaturvedi D, Reichert H, Gunage RD, et al. Identification and functional characterization of muscle satellite cells in Drosophila. Elife 2017 ; 6 : e30107. [CrossRef] [PubMed] [Google Scholar]
- Konstantinides N, Averof M. A common cellular basis for muscle regeneration in arthropods and vertebrates. Science 2014 ; 343 : 788–791. [CrossRef] [PubMed] [Google Scholar]
- Somorjai IML, Somorjai RL, Garcia-Fernàndez J, et al. Vertebrate-like regeneration in the invertebrate chordate amphioxus. Proc Natl Acad Sci U S A 2012 ; 109 : 517–522. [CrossRef] [PubMed] [Google Scholar]
- Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 2010 ; 11 : 97–108. [CrossRef] [PubMed] [Google Scholar]
- Steventon B, Martinez Arias A. Evo-engineering and the cellular and molecular origins of the vertebrate spinal cord. Dev Biol 2017 ; 432 : 3–13. [CrossRef] [PubMed] [Google Scholar]
- Martin BL, Steventon B. A fishy tail: Insights into the cell and molecular biology of neuromesodermal cells from zebrafish embryos. Dev Biol 2022; 487 : 67–73. [CrossRef] [PubMed] [Google Scholar]
- Kariyayama H, Gogoleva N, Harada K, et al. Development of the vertebra and fin skeleton in the lamprey and its implications for the homology of vertebrate vertebrae. Dev Dyn 2023. doi: 10.1002/dvdy.657. [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.