Open Access
Issue
Med Sci (Paris)
Volume 39, Number 11, Novembre 2023
Page(s) 815 - 819
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2023150
Published online 29 November 2023
  1. Tian L, Andrew Hires S, Looger LL. Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb Protoc 2012; 7 : 647–56. [Google Scholar]
  2. Emiliani V, Entcheva E, Hedrich R, et al. Optogenetics for light control of biological systems. Nat Rev Methods Primers 2022; 2 : 55. [CrossRef] [PubMed] [Google Scholar]
  3. Deisseroth K.. Optogenetics. Nat Methods 2011 ; 8 : 26–29. [CrossRef] [PubMed] [Google Scholar]
  4. Gabor D. Holography, 1948–1971. Science 1972 ; 177 : 299–313. [CrossRef] [PubMed] [Google Scholar]
  5. Chen IW, Papagiakoumou E, Emiliani V. Towards circuit optogenetics. Curr Opin Neurobiol 2018 ; 50 : 179–189. [CrossRef] [PubMed] [Google Scholar]
  6. Packer AM, Russell LE, Dalgleish HWP, et al. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 2015 ; 12 : 140–146. [CrossRef] [PubMed] [Google Scholar]
  7. Ronzitti E, Ventalon C, Canepari M, et al. Recent advances in patterned photostimulation for optogenetics. J Opt (UK) 2017 ; 19 : 113001. [CrossRef] [Google Scholar]
  8. Papagiakoumou E, Ronzitti E, Emiliani V. Scanless two-photon excitation with temporal focusing. Nat Methods 2020; 17 : 571–81. [CrossRef] [PubMed] [Google Scholar]
  9. Marshel JH, Kim YS, Machado TA, et al. Cortical layer-specific critical dynamics triggering perception. Science (80) 2019; 365 : 1–23. [Google Scholar]
  10. Chen K, Tian Z, Kong L. Advances of optical miniscopes for in vivo imaging of neural activity in freely moving animals. Front Neurosci 2022; 16 : 1–9. [Google Scholar]
  11. Aharoni D, Hoogland TM. Circuit investigations with open-source miniaturized microscopes: Past, present and future. Front Cell Neurosci 2019 ; 13 : 1–12. [CrossRef] [PubMed] [Google Scholar]
  12. Zong W, Wu R, Chen S, et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat Methods 2021; 18 : 46–9. [CrossRef] [PubMed] [Google Scholar]
  13. Szabo V, Ventalon C, De Sars V, et al. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Urology 2014 ; 84 : 1157–1169. [CrossRef] [PubMed] [Google Scholar]
  14. Accanto N, Blot FGC, Lorca-Cámara A, et al. A flexible two-photon fiberscope for fast activity imaging and precise optogenetic photostimulation of neurons in freely moving mice. Neuron 2023; 111 : 176–89.e6. [CrossRef] [PubMed] [Google Scholar]
  15. Antonini A, Sattin A, Moroni M, et al. Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness in awake mice. eLife 2020; 9 : e58882. [CrossRef] [PubMed] [Google Scholar]
  16. Ozbay BN, Futia GL, Ma M, et al. Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning. Sci Rep 2018 ; 8 : 1–14. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.